Electronic Supplementary Information (ESI)

Porous NiO architecture prepared with coordination polymer precursor as high performance anode material for Li-ion batteries

An Guo, Yue Li, Kun Liu and Wen-Juan Ruan*

Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China. E-mail: wjruan@nankai.edu.cn; Tel: +86-22-23501717

Experimental details

Materials and methods

1,4-benzenedicarboxylic acid (H_2 bdc), isonicotinic acid (Hina), Ni(NO₃)₂·6H₂O, NaOH and the solvents used in CP preparation and electrochemical tests were all of analytical grade, and obtained from Aladdin Industrial Inc. (Shanghai, P.R. China). Acetylene black (>99.9%) and polyvinylidene fluoride (PVDF, >97%) and N-methyl-2-pyrrolidene (NMP, >99%) were supplied by J&K Scientific Ltd. (Beijing, P.R. China). Scanning electron microscope (SEM) images were taken with a JEOL JSM-7500F scanning electron microscope. Transmission electron microscopy (TEM) images were obtained with JEM-2010FEF transmission electron microscope operating at 200 kV. Powder X-ray diffraction (PXRD) was performed on a Rigaku D/max-2500 diffractometer with Cu K α radiation (λ = 0.15406 nm) at 40 kV and 100 mA. N₂ adsorption-desorption isotherm measurement was operated on a V-Sorb 2800P surface area and pore size analyser, and the sample was pretreated at 150 °C for 180 min. Fourier transform infrared spectroscopy (FT-IR) was measured by a MAGNA-560 Fourier transform infrared spectrometer with nujol mull method. Elemental analysis (C, H, and N) was carried out on a Perkin-Elmer 240C analyzer. Thermogravimetric analysis (TGA) was performed on a Rigaku standard TG-DTA analyzer from ambient temperature to 700 °C with a heating rate of 10 °C min⁻¹ in the air, and an empty Al_2O_3 crucible was used as the reference.

Synthesis of porous NiO

In a typical procedure, 0.1 mmol H₂bdc and 0.2 mmol Hina were dissolved in 10 mL of the mixture of H₂O and DMF (1:1, v/v) containing 0.4 mmol NaOH. Under vigorous stirring, 0.4 mmol Ni(NO₃)₂·6H₂O was added into this solution. The suspension was transferred to a Teflon-lined stainless steel autoclave and heated at 120 °C for 3 h. The pale green precipitate was separated by centrifugation, washed several times with ethanol, dried at 60 °C for 6 h and used as the precursor. The calcination process was carried out at 450 °C for 2 h in air to decompose the precursor to porous NiO.

Electrochemical measurement

The electrochemical measurement of the as-prepared NiO sample was performed on a CR2016-type coin cell. A slurry was prepared by thoroughly mixing porous NiO, acetylene black (added to enhance the conductivity of the electrode) and PVDF at a weight ratio of 60:20:20 in NMP solution. This slurry was uniformly spread onto a Cu foil substrate and dried in a vacuum oven at 120 °C for 12 h to fabricate the working electrode, which contained active material of 1.9 mg cm⁻². The test cells was assembled in an Ar-filled glove box using Li metal as the counter electrode, celgard 2300 membrane as the separator and 1 M LiPF₆ solution (ethylene carbonate:dimethyl carbonate = 1:1 in volume) as the electrolyte. The discharge-charge test was performed in the voltage range of 0.01–3.0 V at different current densities on battery testing system (C2001A, 5 V, 1 mA). Cyclic voltammetry (CV) was carried out on a LK3200 electrochemical workstation over the potential range of 0.01–3.0 V at a scan rate of 0.1 mV s⁻¹.

Entry	Morphology	Current density	Cycle number	Capacity	Ref.
		(mA g ⁻¹)		(mA h g ⁻¹)	
1	Yolk-shell	700	150	821-951	1
2	Fiber	40	50	638-696	2
3	Fiber	80	100	583-784	3
4	Nanotube	200	100	600-620	4
5	Nanowall array	500	50	564-723	5
6	Microsphere	200	30	380-975	6
7	Nanotube array	2000	10000	629–675	7
8	Spherical nanoparticle	Not given	50	144-145	8
9	Flower-like architecture	359	40	~1000	This work

 Table S1
 The cycle performance of the NiO materials reported in recent years (2012-present)

References

- 1 S. H. Choi and Y. C. Kang, ACS Appl. Mater. Interfaces, 2014, 6, 2312-2316.
- 2 B. Wang, J. L. Cheng, Y. P. Wu, D. Wang and D. N. He, *Electrochem. Commun.*, 2012, **23**, 5-8.
- 3 V. Aravindan, P. S. Kumar, J. Sundaramurthy, W. C. Ling, S. Ramakrishna and S. Madhavi, *J. Power Sources*, 2013, **227**, 284-290.
- L. Liu, Y. Guo, Y. Wang, X. Yang, S. Wang and H. Guo, *Electrochim. Acta*, 2013, **114**, 42-47.
- 5 F. Cao, G. X. Pan, P. S. Tang and H. F. Chen, *Mater. Res. Bull.*, 2013, **48**, 1178-1183.
- 6 D. Xie, W. Yuan, Z. Dong, Q. Su, J. Zhang and G. Du, *Electrochim. Acta*, 2013, **92**, 87-92.
- 7 F. Cao, G. X. Pan, X. H. Xia, P. S. Tang and H. F. Chen, J. Power Sources, 2014, 264, 161-167.
- 8 K. Prasanna, T. Subburaj, W. J. Lee and C. W. Lee, *Electrochim. Acta*, 2014, **137**, 273-279.