ELECTRONIC SUPPLEMENTARY INFORMATION for the Article

Encapsulation of photoactive porhyrinoids in polyelectrolyte hollow microcapsules viewed by Fluorescence Lifetime Imaging Microscopy (FLIM)

Raquel Teixeira,^{*a+} Vanda Vaz Serra,^{ab} Pedro M. R. Paulo,^a Suzana M. Andrade^a and Sílvia M .B. Costa^{*a}

a) Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

b) Unidade de Química Orgânica e Produtos Naturais, Departamento de Química, Universidade de Aveiro

Present address[†] 3Bs Research Group in Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal.

Corresponding Authors: raquel.teixeira@dep.uminho.pt; sbcosta@tecnico.ulisboa.pt

SUPPLEMENTARY INFORMATION

1. Porphyrin/Polyelectrolyte interactions

TSPP/PAH

Fig S1 Absorption (A) and emission spectra (B, λ_{exc} . = 400 nm) of TSPP (5 μ M) with increasing concentrations of oppositely charged polyelectrolyte PAH (concentrations are given in μ M).

TMPyP/PSS

Fig S2 Absorption (A) and emission spectra (B, λ_{exc} = 400 nm) of TMPyP (5 μ M) with increasing concentrations of oppositely charged polyelectrolyte PSS (concentrations are given in μ M).

Fig S3 Absorption (A) and emission spectra of BOPYP (B. $\lambda_{exc.}$ = 440 nm) with increasing concentrations of PSS at pH = 2.0 (concentrations are given in μ M).

BOPYP/PAA

Fig. S4 FLIM images of polyelectrolyte microcapsules (PAA/PSS)₄BOPYP, after CaCO₃ dissolution. B) Circular aggregate formed between BOPYP and polyelectrolyte PAA prior to adsorption procedure. C) Fluorescence decay and lifetime histogram (inset) from image A.

2. Mechanism of TCPP-PAH synthesis

Fig. S5 Labelling of the positive polyelectrolyte (PAH) with a hydrophobic porphyrin (TCPP) using amide coupling reaction in two steps.

Fig S6 Absorption and emission spectra of coupled TCPP/PAH incorporated in PAH/PSS polyelectrolyte microcapsules. The pH of the colloidal suspension is 7.0; the emission spectrum was obtained with an excitation at the maximum of the Soret absorption band.

3. Hollow Microcapsules with Phthalocyanines

Fig.S7 (A) and (B) FLIM images of $AIPcS_4$ in PAH/PSS microcapsules; (C) Fluorescence decay of a point in the image; and (D) Histogram of the lifetimes obtained from analysis of several point decays, obtained from different images.

4. Microcapsules with Gold Nanoparticles (AuNPs) and AlPCS_x

Fig. S8 Absorption and emission spectra of a tetra-sulfonated phthalocyanine (AIPcS₄) superimposed to the red-edge of the surface plasmon resonance absorption of AuNPs.