Supplementary Information

Microwave-Assisted Synthesis of Hematite/Activated Graphene Composites with Superior Performance for Photocatalytic Reduction of Cr(VI)

Yuanxin Du, ^a Zhuchen Tao, ^a Jian Guan, ^a Zijun Sun, ^a Wencong Zeng, ^a Pengchao Wen, ^a Kun Ni, ^a Jianglin Ye, ^a Shangfeng Yang, ^a Pingwu Du ^{a,b,} and Yanwu Zhu ^{a,b,*}

^{*a*} Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jin Zhai Rd, Hefei, Anhui Province, 230026, P. R. China

^b iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, 96 Jin Zhai Rd, Hefei, Anhui Province, 230026, P. R. China
* Address correspondence to zhuyanwu@ustc.edu.cn

Figure S1. The TG curves of (a) α -Fe₂O₃/aMEGO-1, (b) α -Fe₂O₃/aMEGO-2, (c) α -Fe₂O₃/aMEGO-3 and (d) α -Fe₂O₃/aMEGO-4.

Figure S2. TEM images of (A) α -Fe₂O₃/aMEGO-1, (B) α -Fe₂O₃/aMEGO-2, (C) α -Fe₂O₃/aMEGO-3 and (D) α -Fe₂O₃/aMEGO-4.

Figure S3. XRD pattern (A) and XPS spectra of aMEGO: (B) C 1s spectrum, (C) O 1s spectrum and (D) Fe 2p spectrum.

Figure S4. Raman spectrum of α -Fe₂O₃. The peaks at 215, 277, 385, 597 and 653 cm⁻¹ can be identified as the A_{1g}(1), E_g(2), E_g(4), E_g(5) and E_u bands of hematite. The peak at 1302 cm⁻¹ is magnon scattering peak.

Figure S5. Adsorption-desorption equilibrium curves of Cr(VI) by α -Fe₂O₃ and α -Fe₂O₃/aMEGO composites.

Figure S6. XRD pattern (A) and SEM image (B) of the α -Fe₂O₃/aMEGO-3 after reusing three times.

Figure S7. Nitrogen adsorption-desorption isotherms for (A) α -Fe₂O₃, (B) α -Fe₂O₃/aMEGO-1, (C) α -Fe₂O₃/aMEGO-2, (D) α -Fe₂O₃/aMEGO-3 and (E) α -Fe₂O₃/aMEGO-4.

Figure S8. Absorption changes at 540 nm of DPC-Cr(VI) complex solutions in the presence of aMEGO with variation irradiation time. (experimental parameters: 5mg aMEGO, 50 ml, 10 mg/l Cr(VI) solutions, before or after 0: in the dark or under visible light irradiation)

Sample name	Graphene loading	Concentration of Cr(VI)	Catalyst concentration	Light source	Irradiat ion time	Reduction ratio	Referen ce
P25		Solution		500 W Hg lamp to		70%	
TiO ₂		10 mg/L	1g/L	obtain UV	240	82%	1
TiO ₂ /RGO	0.8 wt%			irradiation	min	90%	
CdS				400 W metal ha		80%	
CdS/RGO	1.5 wt%	10mg/L	1g/L	logen lamp with cut off filter (λ >400 nm) to obtain visible light	240 min	91%	2
ZnO				500 W Hg lamp to	240	58%	
ZnO/RGO	1.0 wt%	10mg/L	1g/L	obtain UV irradiation	min	95%	3
Bi ₂ WO ₆				300 W halogen		43%	
Bi ₂ WO ₆ -				tungsten or 300 W	120		
20GO- alginate sodium	20 mg	30 mg/L	1.5g/L	Xe lamp with a cut off filter to obtain UV irradiation	min	93%	4
Bi ₂ WO ₆		30 mg/L	1.5g/L	300 W halogen	250	39%	

Table S1. Comparison of the Cr(VI) reduction efficiency of α -Fe₂O₃/aMEGO with other graphene-based photocatalysts.

Fe ₂ O ₃ /aM EGO	7.72 wt%	10mg/L	1g/L	(λ>420 nm) to obtain visible light	min	95.28%	t work
		-		with cut off filter	160	23.20%	Presen
aerogels				a 150 W Xe lamp		25.269/	
ene				AM 1.5 G filter and		61%	
ZnS/graph		20mg/L		equipped with an	60 min		13
ZnS		-		A solar simulator		19%	
CdS/RGO		10mg/L	0.175g/L	with cut off filter $(\lambda>420 \text{ nm})$ toobtain visible light	35 min	78%	12
CdS		-		500 W Xe lamp		35%	
CdS/RGO	0.5 wt%	20mg/L	0.3g/L	$(\lambda > 420 \text{ nm})$ to obtain visible light	20 min	49%	11
CdS		-		300 W Xe lamp		40%	
ZnO/RGO	3.0 wt%	5mg/L	0.5g/L	with cut off filter $(\lambda > 400 \text{ nm})$ toobtain visible light	150 min	34%	10
ZnO				300 W Xe lamp		1%	
a-FeOOH nanorod/R GO	3.0 wt%	10mg/L	lg/L	with cut off filter (λ >400 nm) to obtain visible light	min	94%	9
a-FeOOH nanorod				300 W Xe lamp	180	26%	
RGO- UiO- 66(NH ₂)	2.0 wt%	10mg/L	0.5g/L	with cut off filter (λ >420 nm) to obtain visible light	nin	99%	8
UiO- 66(NH ₂)				300 W Xe lamp	100	35%	
TiO ₂ TiO ₂ /RGO	2.5 wt%	10mg/L	0.5g/L	230 W Hg lamp to obtain UV irradiation	60 min	14% 18%	7
TiO ₂ /RGO		12mg/L	0.2g/L	with cut off filter (λ >450 nm) to obtain visible light	240 min	80%	6
 TiO ₂				125 W Hg lamp		14%	
ZnO ZnO/RGO	1.0 wt%	10mg/L	1g/L	500 W Hg lamp to obtain UV	240 min	68% 96%	5
alginate sodium				off filter to obtain visible light	min		
$\frac{B1_2WO_6}{20GO}$	20 mg			tungsten or 300 W Xe lamp with a cut		85%	

Reference

- X. Liu, L. Pan, T. Lv, G. Zhu, T. Lu, Z. Sun and C. Sun, *RSC Adv.*, 2011, 1, 1245– 1249.
- X. Liu, L. Pan, T. Lv, G. Zhu, Z. Sun and C. Sun, *Chem. Commun.*, 2011, 47, 11984–11986.
- X. Liu, L. Pan, T. Lv, T. Lu, G. Zhu, Z. Sun and C. Sun, *Catal. Sci. Technol.*, 2011, 1, 1189–1193.
- H. Ma, J. Shen, M. Shi, X. Lu, Z. Li, Y. Long, N. Li and M. Ye, *Applied Catalysis* B: Environmental, 2012, 121, 198–205.
- X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun and C. Sun, *Chemical Engineering Journal*, 2012, 183, 238–243.
- Y. Zhao, D. Zhao, C. Chen and X. Wang, *Journal of Colloid and Interface Science*, 2013, 405, 211–217.
- C. Wang, M. Cao, P. Wang, Y. Ao, J. Hou and J. Qian, *Applied Catalysis A: General*, 2014, 473, 83–89.
- L. Shen, L. Huang, S. Liang, R. Liang, N. Qin and L. Wu, *RSC Adv.*, 2014, 4, 2546– 2549.
- 9. D. K. Padhi and K. Parida, J. Mater. Chem. A, 2014, 2, 10300-10312.
- 10. X. Pan, M. Yang and Y. J. Xu, Phys. Chem. Chem. Phys., 2014, 16, 5589-5599.
- 11. S. Liu, M. Q. Yang and Y. J. Xu, J. Mater. Chem. A, 2014, 2, 430-440.
- S. Wang, J. Li, X. Zhou, C. Zheng, J. Ning, Y. Zhong and Y. Hu, J. Mater. Chem.
 A, 2014, 2, 19815–19821.

13. D. A. Reddy, J. Choi, S. Lee, R. Ma and T. K. Kim, *RSC Adv.*, 2015, **5**, 18342–18351.