Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information for

Comparative study of the synergistic effect of binary and ternary

LDH with intumescent flame retardant on the properties of

polypropylene composites

Xin Wang,^a Yvonne Spörer,^b Andreas Leuteritz,^b Ines Kuehnert^b, Udo Wagenknecht^b, Gert Heinrich^b, and De-Yi Wang*^{ab}

^a IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain ^b Leibniz-Institut für Polymerforschung Dresden e. V., HoheStraße 6, D-01069 Dresden, Germany

E-mail Address: <u>devi.wang@imdea.org</u>

Structural characterization of binary LDH

XRD patterns of MgAl-LDH and organo-modified MgAl-LDH (b-LDH) are displayed in Fig. S1. As can be seen, MgZnAl-LDH exhibits the typical profile of LDH materials with the characteristics bands at 2theta = 10.1° , 20.1° and 60.5° which are ascribed to the (003), (006) and (110) diffraction peaks, respectively. From these parameters, the basal spacing of MgAl-LDH is estimated to be 0.88 nm according to the Bragg equation. The basal reflection of organo-modified MgAl-LDH shifts to 2theta = 3.2° and the higher order reflections also shift to lower angle, indicating that SDBS anions have been intercalated into the interlayer galleries giving an increased interlayer spacing (d = 2.76 nm).

Fig. S1. Powder XRD profiles of unmodified MgAl-LDH and organo-modified MgAl-LDH.

FTIR spectra of MgAl-LDH and organo-modified MgAl-LDH are shown in Fig. S2. MgAl-LDH shows some similar absorption peaks to organo-modified MgAl-LDH: the broad peak around 3490 cm⁻¹ can be ascribed to the stretching of OH groups attached to Al, Mg and Zn ions in the layers; the peak at 1626 cm⁻¹ is assigned to the bending vibration of interlayer water; the strong band at 1385 cm⁻¹ is attributed to the asymmetric stretching of the carbonate anion. However, compared with MgAl-LDH, some new peaks appear in the FTIR spectra of organo-modified MgAl-LDH. The appearance of the -CH₃ and -CH₂- stretching peaks (2930 and 2860 cm⁻¹) together with the sulfonate stretching bands (1185 and 1036 cm⁻¹) confirms that SDBS have been exchanged into the interlayer space of MgAl-LDH.

Fig. S2. FTIR spectra of (a) MgAl-LDH and (b) organo-modified MgAl-LDH.

The burned bars after LOI tests

The digital photos of the sample bars after LOI tests are displayed in Fig. S3. As can be seen, PP/IFR16/t-LDH4 can form thermally stable char that extinguished the flame immediately. However, in the case of PP/IFR16/b-LDH4, the char was not stable enough to inhibit the flame spread.

Fig. S3. Digital photos of the sample bars after LOI tests.