Supporting Information

Interface Reacted ZnFe₂O₄ on α-Fe₂O₃ Nanoarrays for Largely Improved

Photoelectrochemical Activity

Qiong Liu, Fengren Cao, Fangli Wu, Wei Tian* and Liang Li*

Fig. S1 Variation of Photocurrent density *vs* bias potential (vs. RHE) (*J-V*) with different thickness of ZnO layer under AM 1.5 G illumination and in the dark. (a1) 20 nm, (a2) 40 nm, (a3) 60 nm, (a4) 80 nm.

Fig. S2 Bode phase plots of pristine α -Fe₂O₃ nanorod arrays and ZnFe₂O₄/ α -Fe₂O₃ composite nanorod arrays under light.

Reference	Photocurrent Density (mA cm ⁻²)		
	Fe ₂ O ₃	ZnFe ₂ O ₄ /Fe ₂ O ₃	Enhancement (%)
16	0.009	0.05	456
11	0.18	0.23	28
20	0.25	0.45	80
Our Work	0.03	0.28	833

Table S1 The comparative PEC performances of our work with other previous reports on $ZnFe_2O_4/Fe_2O_3$. The photocurrent densities were all measured at 1.23 V vs RHE.