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SUPPORTING INFORMATION 

Appendix A 

Let us consider a binary solute-solvent system made of ݊ solute molecules and ܰ solvent molecules. 

Any intensive thermodynamic property ݂ can be fully defined as a function of pressure ݌, 

temperature T and solute molecular fraction ߯௡, that is ݂(݌, T, ߯௡), thus providing 
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Eqs (A.1) and (A.2) plainly show that in the limit  ߯௡ → 0 only eq (A.2) is always vanishing (we 

obviously consider ߲݂ ߲߯௡ൗ  as never diverging), while eq (A.1) only in the case that 
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= 0 provides a null value.  

The intensive properties involved in thermodynamic relations like eq (A.1) (i.e. the product of an 

extensive property with ቀడ௙
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 ) can be in general defined as the ratio of two extensive 

properties, say Y and Z, providing  
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with ݕ௡, ,ேݕ ௡ andݖ  .ே the Y and Z solute and solvent partial molecular properties, respectivelyݖ

Considering that in the limit of solute infinite dilution any added solute molecule cannot modify the 

solute or solvent partial molecular properties (no solute-solute interaction) and hence their 

derivatives in ߯௡ for the ߯௡ → 0 limit must vanish, we readily obtain  
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where ݕ଴, ,௦ݕ ଴ are the solute infinite dilution partial molecular properties andݖ  ௦ the pure solventݖ

ones. Eq (A.4) shows that in order to have  
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the relation  
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must be fulfilled, providing  
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Eq (A.7) is obviously valid when either ݕ଴ ≅ ଴ݖ ௦ andݕ ≅ ଴ݕ ௦ orݖ ≅ ଴ݖ ≅ 0. For more general 

conditions eq (A.7) requires that the Y and Z properties be correlated in order to provide roughly 

the same relative shifts of the solute partial molecular properties with respect to the solvent ones 

(in previous papers47,48 where we assumed eq (A.5) at least approximately valid, the Y and Z 

properties corresponded to the closely related and typically correlated third and second potential 

energy central moments). In the present paper where the intensive property of interest is ݂ =

଴߯Eߝ = M/V eqs (A.6) and (A.7) cannot be considered in general fulfilled (the system volume and 

mean dipole can vary rather independently of each other) and hence we cannot use as a reasonable 

assumption lim
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Appendix B 

From the definition of chemical potential we have that for a macroscopic system made of ܰ solvent 

molecules at temperature T within a volume V (corresponding to a pressure ݌), the chemical 

potential of a single solute molecule inserted in this system (infinite dilution chemical potential) is  

μ(݌, T) = A(ܰ, V, T, 1) − A(ܰ, V, T, 0)                                                                                                        B. 1 

Eq B.1 is clearly based on the consideration that for a macroscopic system the insertion of a single 

molecule corresponds to virtually a differential variation of the molecular amount, thus providing 

differential variations of the extensive thermodynamic properties and unable to modify any 

intensive property. Conversely, when dealing with nanoscopic size systems even the insertion of a 

single solute molecule at fixed volume, especially for large solutes, may provide a significant 

increase of the system pressure ∆݌ and thus the Helmholtz free energy change due to inserting the 
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solute molecule at fixed volume, cannot correspond anymore to the chemical potential at the pure 

solvent pressure condition as in eq (B.1). In fact, for such nanoscopic systems we can rewrite eq 

(B.1) considering that the discrete Helmholtz free energy change be corresponding to the average 

of the solute chemical potentials at ݌ and ݌ +  pressure conditions (i.e. the mean of the solute ݌∆

chemical potentials as provided by inserting the single solute molecule in a macroscopic solvent 

system either at pressure ݌ or pressure ݌ +   that is ,(݌∆

A(ܰ, V, T, 1) − A(ܰ, V, T, 0) ≅
μ(݌, T) + μ(݌ + ,݌∆ T)

2
                                                                          B. 2 

By expressing μ(݌ + ,݌∆ T) via 
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we readily obtain  
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with ݒ the solute partial molecular volume. Eq (B.4) clearly shows that for a nanoscopic system as a 

MD simulation box, even assuming all the basic thermodynamic relations still working, the true 

chemical potential of the solute at infinite dilution requires a correction (−2/݌∆(݌)ݒ) with respect 

to the usual thermodynamic expression valid for macroscopic systems. Therefore, for the folded to 

unfolded state transition we have, assuming virtually the same pressure increase due to the folded 

or unfolded protein insertion, 

μ஽(݌, T) − μே(݌, T) ≅ A஽(ܰ, V, T, 1) − Aே(ܰ, V, T, 1) −
݌∆
2
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Eq (B.5) indicates that in order to have a simulation providing essentially the correct folding-

unfolding equilibrium distribution, i.e. reproducing the equilibrium distribution of a single solute 

molecule embedded in a macroscopic solvent system, we actually only need that the correction 

term − ∆௣
ଶ

(݌)஽ݒ] −  ,be negligible compared to the Helmholtz free energy change. Therefore [(݌)ேݒ

for large simulation boxes (containing the protein hydration shell and a significant number of bulk 

solvent molecules) with then not too large ∆݌, even when considering large solutes like proteins 

with large partial molecular volumes, the correction term is likely to be rather small if not negligible 

within the noise as ݒ஽(݌) and ݒே(݌) are typically close (for the SPC-Myoglobin system of this paper, 

considering the experimental partial molecular volume variation of about -100 ml/mol and the 

pressure increase as obtained by our MD simulations, such a correction is 3-4 kJ/mol, comparable 

to the estimated noise of our calculated chemical potential change). 
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Appendix C 

 

Total solvent accessible surface as obtained by Gromacs ‘g_sas’ tool: 
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Radius of gyration as obtained by Gromacs ‘g_gyrate’ tool: 
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Timelines per-residue as obtained by ‘timeline’ tool in VMD with increasing electric fields: 

 

Folded Myoglobin E=0 

 
Folded Myoglobin E=102 V/m 

 
 

 



S7 
 

 

Folded Myoglobin E=104 V/m 

 
Folded Myoglobin E=106 V/m 
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Folded Myoglobin E=108 V/m 

 
Unfolded Myoglobin E=109 V/m 

 


