Supporting Information

Superior Enhanced Antibacterial Activity of New "Composite" Biocides

with both N-chloramine and Quaternary Ammonium Moieties

Chenxi Ning^{*},¹ Lingdong Li^{*},² Sarvesh Logsetty,³ Sadegh Ghanbar,⁴ Melinda Guo,⁵ Werner

Ens,⁶ and Song Liu*,1,4,7,8

*Correspondence: Song Liu, Department of Textile Sciences, Faculty of Human Ecology; Department of Biosystems Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada R3T 2N2, 204-474-9616 (phone); 204-474-7593 (fax); Song.Liu@umanitoba.ca

Table of Contents

page

SpinWorks 4: PROTON D2O {C:\Bruker\TOPSPIN1.3} Liu 41

Figure S1. ¹H-NMR spectrum of compound#1 (D₂O).

Figure S3. ¹H-NMR spectrum of compound#2 (D₂O).

Figure S5. ¹H-NMR spectrum of compound#3 (D₂O).

Figure S7. ¹H-NMR spectrum of compound#4 (D₂O).

Figure S9. ¹H-NMR spectrum of compound#5 (D₂O).

Figure S11. ¹H-NMR spectrum of compound#6 (D₂O).

Figure S13. ¹H-NMR spectrum of compound#7 (D₂O).

Figure S14. ¹³C NMR spectrum of compound#7 (D₂O).

Figure S15. ¹H-NMR spectrum of compound#8 (D₂O).

Figure S17. ¹H-NMR spectrum of compound#9 (D₂O).

SpinWorks 4: C13CPD D2O {C:\Bruker\TOPSPIN1.3} Liu 49

Figure S19. ¹H-NMR spectrum of compound#10 (D₂O).

Figure S21. ¹H-NMR spectrum of compound#11(D₂O).

Figure S23. ¹H-NMR spectrum of compound#12 (D₂O).

2. HPLC-MS analysis of compounds # 1-3,7-9

Analytic HPLC was run on a Varian 212 HPLC instrument, equipped with X-BridgeTM BEH C18 2.5µm and Inertsil C8 3.3µm columns and interfaced with Varian 500 MS-Ion trap detector. Eluent system was gradient: acetonitrile: water (5:95, v/v, 0.1% of formic acid), a linear gradient was applied for 20 min, up to an acetonitrile: water ratio of 90:10 (v/v), after which elution with a acetonitrile: water (5:95, v/v) gradient was used. Flow: 0.4 ml min⁻¹. Compound #7-8 were analyzed using X-BridgeTM BEH C18 2.5µm and the rest were ran through Inertsil C8 3.3µm column.

Figure S25. LCMS analysis of compound#1, purity: 96.30%

Figure S26. LCMS analysis of compound#2, purity: 99.65%.

Figure S27. LCMS analysis of compound#3, purity: 95.48%.

Figure S28. LCMS analysis of compound#7, purity: 96.43%.

Figure S29. LCMS analysis of compound#8, purity: 97.37%.

Figure S30. LCMS analysis of compound#9, purity: 97.22%.

3. Absolute quantitative ¹H NMR (qHNMR) of compounds# 4-6,10-12

SpinWorks 4: PROTON D2O {C:\Bruker\TOPSPIN1.3} Liu 12

Figure S31. Quantitative ¹H NMR (qHNMR) spectrum of compound#4, purity: 99.30%.

$$P[\%] = \frac{n_{IC} \cdot Int_t \cdot MW_t \cdot m_{IC}}{n_t \cdot Int_{IC} \cdot MW_{IC} \cdot m_s} \cdot P_{IC}$$

 m_s = 4.995 mg, m_{IC} = 1.512 mg, P_{IC} =99.94,

 $Int_t = 17.586, n_t = 19, Int_{IC} = 1.449, n_{IC} = 2,$

MW_t= 298.21 g/mol, MW_{IC}=116.07 g/mol

Table S1. Absolute quantitative ¹H NMR (qHNMR) analysis of compound#4 (4.995 mg/0.6 mL) in D₂O with the addition of maleic acid (99.94% pure) as internal calibrant.

	Peaks (ppm)	Integration	Number of porotons	Weigh (mg)	MWt (g/mol)
	1.471-1.549	5.388	6		
	3.108-3.205	8.341	9		
Compound 4	3.301-3.472	2	2	4.995	298.21
	3.640-3.785	1.857	2		
	Sum	17.586	19		
Internal St	6.285-6.493	1.449	2	1.512	116.07

 $P[\%] = \frac{2 * 17.586 * 298.21 * 1.512}{19 * 1.449 * 116.07 * 4.995} * 99.94 = \frac{15858.82}{15961.64} * 99.94 = 99.30\%$

Figure S32. Quantitative ¹H NMR (qHNMR) spectrum of compound#5, purity: 96.55%.

$$P[\%] = \frac{n_{IC} \cdot Int_t \cdot MW_t \cdot m_{IC}}{n_t \cdot Int_{IC} \cdot MW_{IC} \cdot m_s} \cdot P_{IC}$$

 m_s = 4.66 mg, m_{IC} = 0.593 mg, P_{IC} =99.94,

- $Int_t=29.433, n_t=30, Int_{IC}=1.084, n_{IC}=2,$
- MW_t= 486.82 g/mol, MW_{IC}=116.07 g/mol

Table S2. Absolute quantitative ¹H NMR (qHNMR) analysis of compound#**5** (4.66 mg/0.6 mL) in D₂O with the addition of maleic acid (99.94% pure) as internal calibrant.

	Peaks (ppm)	Integration	Number of porotons	Weigh (mg)	MWt (g/mol)
	1.472-1.567	11.553	12		
	2.014-2.221	4	4		
C	3.063-3.171	5.755	6	166	106 07
Compound 5	3.275 - 3.478	4.089	4	4.00	400.02
	3.610-3.777	4.036	4		
	Sum	29.433	30		
Internal St	6.338-6.478	1.084	2	0.593	116.07

 $P[\%] = \frac{2 * 29.433 * 486.82 * 0.593}{30 * 1.084 * 116.07 * 4.66} * 99.94 = \frac{16993.69}{17589.62} * 99.94 = 96.55\%$

$$P[\%] = \frac{n_{IC} \cdot Int_t \cdot MW_t \cdot m_{IC}}{n_t \cdot Int_{IC} \cdot MW_{IC} \cdot m_s} \cdot P_{IC}$$

 m_s = 6.123 mg, m_{IC} =1.023 mg, P_{IC} =99.94,

 $Int_t=33.851, n_t=31, Int_{IC}=1.314, n_{IC}=2,$

MW_t=405.79 g/mol, MW_{IC}=116.07 g/mol

Table S3. Absolute quantitative ¹H NMR (qHNMR) analysis of compound#6 (6.123 mg/0.6 mL)in D_2O with the addition of maleic acid (99.94% pure) as internal calibrant.

	Peaks (ppm)	Integration	Number of porotons	Weigh (mg)	MWt (g/mol)
	1.462-1.569	6.09	6		
	2.118-2.342	2	2		
	3.207-3.351	17.076	15		
Compound 6	3.453-3.593	2.129	2	6.123	405.79
	3.649-3.788	2.164	2		
	3.933-4.067	4.392	4		
	Sum	33.851	31		
Internal St	6.342-6.482	1.314	2	1.023	116.07

$$P[\%] = \frac{2 * 33.851 * 405.79 * 1.023}{31 * 1.314 * 116.07 * 6.123} * 99.94 = \frac{28104.67}{28949.51} * 99.94 = 97.02\%$$

$$P[\%] = \frac{n_{IC} \cdot Int_t \cdot MW_t \cdot m_{IC}}{n_t \cdot Int_{IC} \cdot MW_{IC} \cdot m_s} \cdot P_{IC}$$

 $m_s = 7.794 \text{ mg}, m_{IC} = 1.944 \text{ mg}, P_{IC} = 99.94,$

 $Int_t=30.441, n_t=31, Int_{IC}=1.635, n_{IC}=2,$

MW_t= 370.36 g/mol, MW_{IC}=116.07 g/mol

Table S4. Absolute quantitative ¹ H NMR (qHNMR) analysis of compound#10 (7.794 n	ng/0.6
mL) in D_2O with the addition of maleic acid (99.94% pure) as internal calibrant.	

	Peaks (ppm)	Integration	Number of porotons	Weigh (mg)	MWt (g/mol)
	0.776-0.965	2.935	3		
	1.217-1.430	5.997	6		
	1.465-1.568	5.676	6		
	1.623-1.836	2.023	2		
Compound 10	1.997-2.253	1.988	2	7.794	370.36
	2.990-3.136	5.832	6		
	3.195-3.427	4	4		
	3.589-3.801	1.99	2		
	Sum	30.441	31		
Internal St	6.382-6.453	1.635	2	1.944	116.07

 $P[\%] = \frac{2 * 30.441 * 370.36 * 1.944}{31 * 1.635 * 116.07 * 7.794} * 99.94 = \frac{43833.81}{45852.16} * 99.94 = 95.54\%$

$$P[\%] = \frac{n_{IC} \cdot Int_t \cdot MW_t \cdot m_{IC}}{n_t \cdot Int_{IC} \cdot MW_{IC} \cdot m_s} \cdot P_{IC}$$

 m_s = 7.498 mg, m_{IC} = 1.926 mg, P_{IC} =99.94,

- $Int_t=40.773, n_t=43, Int_{IC}=1.982, n_{IC}=2,$
- MW_t = 452.5 g/mol, MW_{IC} =116.07 g/mol

Table S5. Absolute quantitative ¹ H NMR (qHNMR) analysis of compound#11 (7. 498 mg/0.6
mL) in D_2O with the addition of maleic acid (99.94% pure) as internal calibrant.

	Peaks (ppm)	Integration	Number of protons	Weigh (mg)	MWt (g/mol)
	0.779-0.999	2.658	3		
	1.201-1.412	16.697	18		
	1.453-1.55	5.602	6		
	1.582-1.834	2.272	2		
Compound 11	1.986-2.284	2.002	2	7.498	452.5
	2.981-3.233	5.603	6		
	3.215-3.509	4	4		
	3.605-3.807	1.939	2		
	Sum	40.773	43		
Internal St	6.284-6.445	1.982	2	1.926	116.07

 $P[\%] = \frac{2 * 40.773 * 452.5 * 1.926}{43 * 1.982 * 116.07 * 7.498} * 99.94 = \frac{71068.56}{74171.58} * 99.94 = 95.76\%$

SpinWorks 4: PROTON D2O {C:\Bruker\TOPSPIN1.3} Liu 32

 $P[\%] = \frac{n_{IC} \cdot Int_{t} \cdot MW_{t} \cdot m_{IC}}{n_{t} \cdot Int_{IC} \cdot MW_{IC} \cdot m_{s}} \cdot P_{IC}$ m_s= 8.887 mg, m_{IC}= 2.803 mg, P_{IC}=99.94, Int_t= 46.572, n_t= 47, Int_{IC}= 2.704, n_{IC}=2, MW_t=480.55 g/mol, MW_{IC}=116.07 g/mol

Table S6. Absolute quantitative	¹ H NMR (qHNMR) analysis of c	compound#12 (8.887 mg/0.6
mL) in D_2O with the addit	tion of maleic acid (99.94% pure)) as internal calibrant.

	Peaks (ppm)	Integration	Number of porotons	Weigh (mg)	MWt (g/mol)
	0.801-1.01	2.8	3		
	1.17-1.407	21.65	22		
	1.44-1.549	6.051	6		
	1.586-1.818	2.393	2		
Compound 12	2.035-2.286	2.059	2	8.887	480.55
	3.052-3.236	5.696	6		
	3.255-3.515	4	4		
	3.629-3.856	1.923	2		
	Sum	46.572	47		
Internal St	6.319-6.437	2.704	2	2.803	116.07

 $P[\%] = \frac{2 * 46.572 * 480.55 * 2.803}{47 * 2.704 * 116.07 * 8.887} * 99.94 = \frac{125463.26}{131093.06} * 99.94 = 95.65\%$

	Traceable Certified Reference Materials
I-NMR Spectrum (600 MHz, Maleic acid in D ₂ O)	Ceffeffefee at 100 and
HOO synal suppresad	Product name: Maleic acid Product no.: 92816 Lot no.: BCBM8127V Formula: C4HQ4 Molecular mass: 116.07 Traceability ^[9] : NIST SFM 84I (KHP) and NIST SFM 350b (Benzoic acid) Certificate issue date: April 16, 2014 Expiry: MAR 2018
ISC Guide 31, 2 ^{et} Ed. (2000), "Reference materials - Contents of certificates and labels" Eurochem/CITAC Guide, 1 ^{et} Ed. (2003), "Traceability in chemical measurement" ISO Guide 35, 3 ^{et} Ed. (2005), "Reference materials - General and statistical principles for certification" Eurochem/CITAC Guide, 3 ^{et} Ed. (2012), "Quantifying uncertainty in analytical measurement" ISOIEC 17025, 2 ^{ett} Ed. (2005), "General requirements for the competence of testing and calibration laborations"	Certified value and uncertainty according to ISO Guide 35 ^[5] and Eurachem/CITAC Guide ^[4] Substance Certified value as mass fraction (g/g) Expanded uncertainty, <i>U = k¹u_k</i> (<i>k = 2</i>) as mass fraction (g/g)
ISO Guide 34, 3 ^e Ed. (2009), "General requirements for the competence of reference material producers"	Maleic acid 99.94 % 0.16 %
	Minimum sample: The sample is solid at room-temperature. 20 mg is recommended as the minimal sample amount. It less material used, it is recommended to increase the certified uncertainty by a factor of two for half of sample and a factor of four for a quarter of sample.
	Drying instruction: This material does not require drying before use. Intended use: This CRM shall be used as internal standard for quantitative ¹ H-NMR measurements.
	Storage and handling: The CRM should be stored in the original bottle at rcom-temperature (20- 25°C). After use the bottle should be lightly closed and protected from excessive moisture and light. Storage under Argon is recommended.
	CRM operations: A-RECK
	Certification body: K.o. Some, Ph.D. Iso Guide 34 ISO/IEC 17025 ISO 9001
go 4 of 4 Sigma-Adrich Production GmbH, Industriestrasse 25, 9471 Buchu' Switzerfand SIGMA-ALDRICH	Page 1 of 4 Signa-Adrich Production GmbH, Industriestinsse 25, 5471 Bucht/ Switzenfand SIGMA-ALDRICH*

Figure S37. Certificate of the internal calibrant maleic acid.

Table S7. Comparison of the antibacterial activity of tetradecyl # 9 and 12 with Benzyldodecyldimethylammonium bromide (C12) and Benzyltetradecyldimethylammonium chloride(C14) against 107 CFU/mL of MRSA and 106 CFU/mL MDR P. aeruginosa.

			Gran	n-positive MRS.	A (10 ⁷ CFU/mL)***		
<u>Syn</u> comp	<u>thetic</u> ounds*		Ī	Bacterial Reducti	on at Various Co	ontact Time (min	<u>)</u>	
		<u>1</u>	<u>3</u>	<u>5</u>	<u>10</u>	<u>20</u>	<u>30</u>	<u>60</u>
<u>9</u>	<u>%</u>	94.23 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00	100.0 ± 0.00
	Log ₁₀	1.24 ± 0.00	7.21 ± 0.09	7.21 ± 0.09	7.21 ± 0.09	7.21 ± 0.09	7.21 ± 0.09	7.21 ± 0.09
<u>12</u>	<u>%</u>	$\underline{100.0 \pm 0.00}$	$\underline{100.0\pm0.00}$	$\underline{100.0 \pm 0.00}$	$\underline{100.0\pm0.00}$	$\underline{100.0\pm0.00}$	$\underline{100.0\pm0.00}$	100.0 ± 0.00
	Log ₁₀	7.21 ± 0.09	7.21 ± 0.09	7.21 ± 0.09	7.21 ± 0.09	7.21 ± 0.09	7.21 ± 0.09	7.21 ± 0.09
<u>C12</u>	<u>%</u>	<u>37.40 ± 52</u>	<u>58.96 ± 25</u>	<u>81.54±16</u>	99.64 ± 0.42	$\underline{100.0 \pm 0.00}$	$\underline{100.0 \pm 0.00}$	$\underline{100.0 \pm 0.00}$
	Log ₁₀	0.300 ± 0.42	$\underline{0.430\pm0.28}$	$\underline{0.840 \pm 0.45}$	2.69 ± 0.72	7.21 ± 0.09	7.21 ± 0.09	7.21 ± 0.09
<u>C14</u>	<u>%</u>	$\underline{100.0 \pm 0.00}$	$\underline{100.0 \pm 0.00}$	$\underline{100.0 \pm 0.00}$	$\underline{100.0 \pm 0.00}$	$\underline{100.0 \pm 0.00}$	$\underline{100.0 \pm 0.00}$	$\underline{100.0 \pm 0.00}$
	Log ₁₀	7.21 ± 0.09	7.21 ± 0.09	7.21 ± 0.09	7.21 ± 0.09	7.21 ± 0.09	7.21 ± 0.09	7.21 ± 0.09
	Gram-negative MDR P. aeruginosa (106 CFU/mL)***							
			<u>Gram-nega</u>	tive MDR P. aeı	ruginosa (10 ⁶ C)	FU/mL)***		
		1	<u>Gram-nega</u>	tive MDR P. aer	<u>ruginosa (10º C</u>	FU/mL)*** <u>20</u>	30	<u>60</u>
<u> </u>	<u>%</u>	<u>1</u> <u>85.60±18.2</u>	<u>Gram-nega</u> <u>3</u> <u>99.98± 0.03</u>	tive MDR P. aer $\frac{5}{100.0 \pm 0.00}$	<u>uginosa (10° C)</u> <u>10</u> <u>100.0 ± 0.00</u>	<u>FU/mL)***</u> <u>20</u> <u>100.0 ± 0.00</u>	<u>30</u> <u>100.0 ± 0.00</u>	<u>60</u> <u>100.0 ± 0.00</u>
<u>9</u>	<u>%</u> Log ₁₀	<u>1</u> <u>85.60±18.2</u> <u>1.18± 0.88</u>	<u>Gram-negar</u> <u>3</u> <u>99.98± 0.03</u> <u>4.73± 1.8</u>	tive MDR P. aer <u>5</u> 100.0 ± 0.00 6.36 ± 0.45	<u>10</u> $\frac{10}{100.0 \pm 0.00}$ 6.36 ± 0.45	$\frac{20}{100.0 \pm 0.00}$ $\frac{6.36 \pm 0.45}{100.0 \pm 0.00}$	<u>30</u> $\underline{100.0 \pm 0.00}$ $\underline{6.36 \pm 0.45}$	<u>60</u> $\underline{100.0 \pm 0.00}$ $\underline{6.36 \pm 0.45}$
<u> </u>	<u>%</u> <u>Log₁₀</u>	$\frac{1}{85.60\pm18.2}$ $\frac{1.18\pm0.88}{98.94\pm1.5}$	Gram-negative $\underline{3}$ 99.98 ± 0.03 4.73 ± 1.8 99.99 ± 0.01	tive MDR P. aer 5 100.0 ± 0.00 6.36 ± 0.45 100.0 ± 0.00	$\frac{10}{100.0 \pm 0.00}$ $\frac{100.0 \pm 0.00}{6.36 \pm 0.45}$ $\frac{100.0 \pm 0.00}{100.0 \pm 0.00}$	$\frac{20}{100.0 \pm 0.00}$ $\frac{6.36 \pm 0.45}{100.0 \pm 0.00}$	$\underline{30}$ $\underline{100.0 \pm 0.00}$ $\underline{6.36 \pm 0.45}$ $\underline{100.0 \pm 0.00}$	$\underline{60}$ $\underline{100.0 \pm 0.00}$ $\underline{6.36 \pm 0.45}$ $\underline{100.0 \pm 0.00}$
<u>9</u> <u>12</u>	<u>%</u> Log ₁₀ <u>%</u> Log ₁₀	$\frac{1}{85.60\pm18.2}$ $\frac{1.18\pm0.88}{98.94\pm1.5}$ $\frac{3.85\pm3.1}{3.85\pm3.1}$	$\frac{\text{Gram-negat}}{2}$ $\frac{99.98 \pm 0.03}{4.73 \pm 1.8}$ $\frac{99.99 \pm 0.01}{4.91 \pm 1.6}$	tive MDR P. aer 5 100.0 ± 0.00 6.36 ± 0.45 100.0 ± 0.00 6.36 ± 0.45	$\frac{10}{100.0 \pm 0.00}$ $\frac{6.36 \pm 0.45}{100.0 \pm 0.00}$ $\frac{6.36 \pm 0.45}{100.0 \pm 0.00}$	$\frac{20}{100.0 \pm 0.00}$ $\frac{6.36 \pm 0.45}{100.0 \pm 0.00}$ $\frac{6.36 \pm 0.45}{100.0 \pm 0.00}$	30 100.0 ± 0.00 6.36 ± 0.45 100.0 ± 0.00 6.36 ± 0.45	$ \underline{60} $ $ \underline{100.0 \pm 0.00} $ $ \underline{6.36 \pm 0.45} $ $ \underline{100.0 \pm 0.00} $ $ \underline{6.36 \pm 0.45} $
<u>9</u> <u>12</u> <u>C12</u>	<u>%</u> Log ₁₀ % Log ₁₀	$\frac{1}{85.60\pm18.2}$ $\frac{1.18\pm0.88}{98.94\pm1.5}$ 3.85 ± 3.1 97.09 ± 0.00	Gram-negation $\underline{3}$ 99.98 ± 0.03 4.73 ± 1.8 99.99 ± 0.01 4.91 ± 1.6 98.99 ± 1.4	tive MDR P. aer 5 100.0 ± 0.00 6.36 ± 0.45 100.0 ± 0.00 6.36 ± 0.45 99.44 ± 0.79	$\frac{10}{10.0 \pm 0.00}$ $\frac{6.36 \pm 0.45}{100.0 \pm 0.00}$ $\frac{6.36 \pm 0.45}{100.0 \pm 0.00}$ $\frac{6.36 \pm 0.45}{100.0 \pm 0.00}$	$\frac{20}{100.0 \pm 0.00}$ $\frac{6.36 \pm 0.45}{100.0 \pm 0.00}$ $\frac{6.36 \pm 0.45}{100.0 \pm 0.00}$ $\frac{6.36 \pm 0.45}{100.0 \pm 0.00}$	$\underline{30}$ $\underline{100.0 \pm 0.00}$ $\underline{6.36 \pm 0.45}$ $\underline{100.0 \pm 0.00}$ $\underline{6.36 \pm 0.45}$ $\underline{100.0 \pm 0.00}$ $\underline{100.0 \pm 0.00}$	$ \underline{60} $ $ \underline{100.0 \pm 0.00} $ $ \underline{6.36 \pm 0.45} $ $ \underline{100.0 \pm 0.00} $ $ \underline{6.36 \pm 0.45} $ $ \underline{100.0 \pm 0.00} $
<u>9</u> <u>12</u> <u>C12</u>	2 2% Log ₁₀ % Log ₁₀ % Log ₁₀	$\frac{1}{85.60\pm18.2}$ $\frac{1.18\pm0.88}{98.94\pm1.5}$ $\frac{3.85\pm3.1}{97.09\pm0.00}$ 1.54 ± 0.00	$\frac{\text{Gram-negat}}{2}$ $\frac{99.98 \pm 0.03}{4.73 \pm 1.8}$ $\frac{99.99 \pm 0.01}{4.91 \pm 1.6}$ $\frac{98.99 \pm 1.4}{2.8 \pm 1.5}$	tive MDR P. aer 5 100.0 ± 0.00 6.36 ± 0.45 100.0 ± 0.00 6.36 ± 0.45 99.44 ± 0.79 2.25 ± 0.04	$\frac{10}{100.0 \pm 0.00}$ $\frac{6.36 \pm 0.45}{100.0 \pm 0.00}$	$\frac{20}{100.0 \pm 0.00}$ $\frac{6.36 \pm 0.45}{100.0 \pm 0.00}$ $\frac{6.36 \pm 0.45}{100.0 \pm 0.00}$ $\frac{6.36 \pm 0.45}{100.0 \pm 0.00}$	$\underline{30}$ $\underline{100.0 \pm 0.00}$ $\underline{6.36 \pm 0.45}$ $\underline{100.0 \pm 0.00}$ $\underline{6.36 \pm 0.45}$ $\underline{100.0 \pm 0.00}$ $\underline{6.36 \pm 0.45}$	$ \underline{60} $ $ 100.0 \pm 0.00 $ $ 6.36 \pm 0.45 $ $ 100.0 \pm 0.00 $ $ 6.36 \pm 0.45 $ $ 100.0 \pm 0.00 $ $ 6.36 \pm 0.45 $
<u>9</u> <u>12</u> <u>C12</u> <u>C14</u>	2 2% Log ₁₀ 2% Log ₁₀ 2%	$\frac{1}{85.60\pm18.2}$ $\frac{1.18\pm0.88}{98.94\pm1.5}$ $\frac{3.85\pm3.1}{97.09\pm0.00}$ 1.54 ± 0.00 100.0 ± 0.00	Gram-negation $\underline{3}$ 99.98 ± 0.03 4.73 ± 1.8 99.99 ± 0.01 4.91 ± 1.6 98.99 ± 1.4 2.8 ± 1.5 100.0 ± 0.00	tive MDR P. aer 5 100.0 ± 0.00 6.36 ± 0.45 100.0 ± 0.00 6.36 ± 0.45 99.44 ± 0.79 2.25 ± 0.04 100.0 ± 0.00	$\frac{10}{10.0 \pm 0.00}$ $\frac{6.36 \pm 0.45}{100.0 \pm 0.00}$	$\frac{20}{100.0 \pm 0.00}$ $\frac{6.36 \pm 0.45}{100.0 \pm 0.00}$	30 100.0 ± 0.00 6.36 ± 0.45	$\frac{60}{100.0 \pm 0.00}$ $\frac{6.36 \pm 0.45}{100.0 \pm 0.00}$
2 12 <u>C12</u> <u>C14</u>	200 2% 200 2% 200 2% 200 2% 200 200 2% 200 200	$\frac{1}{85.60\pm18.2}$ $\frac{1.18\pm0.88}{98.94\pm1.5}$ $\frac{3.85\pm3.1}{97.09\pm0.00}$ $\frac{1.54\pm0.00}{100.0\pm0.00}$ $\frac{100.0\pm0.00}{6.36\pm0.45}$	Gram-negation 3 99.98 ± 0.03 4.73 ± 1.8 99.99 ± 0.01 4.91 ± 1.6 98.99 ± 1.4 2.8 ± 1.5 100.0 ± 0.00 6.36 ± 0.45	tive MDR P. aer 5 100.0 ± 0.00 6.36 ± 0.45 100.0 ± 0.00 6.36 ± 0.45 99.44 ± 0.79 2.25 ± 0.04 100.0 ± 0.00 6.36 ± 0.45	Image: ruginosa (10° C) 10 100.0 ± 0.00 6.36 ± 0.45 100.0 ± 0.00 6.36 ± 0.45 100.0 ± 0.00 6.36 ± 0.45 100.0 ± 0.00 6.36 ± 0.45	$\frac{20}{100.0 \pm 0.00}$ $\frac{6.36 \pm 0.45}{100.0 \pm 0.00}$	30 100.0 ± 0.00 6.36 ± 0.45	$ \underbrace{60} $ $ 100.0 \pm 0.00 $ $ 6.36 \pm 0.45 $ $ 100.0 \pm 0.00 $ $ 6.36 \pm 0.45 $ $ 100.0 \pm 0.00 $ $ 6.36 \pm 0.45 $ $ 100.0 \pm 0.00 $ $ 6.36 \pm 0.45 $

incentration of the compounds was set at 0.141 mivi