# **Supporting Information**

Zinc bromide voltammetry in dilute aqueous solutions of ionic liquid bromide salts: Mechanistic complications and the influence of complexation

#### **Additional Voltammetric Data**

Dimensionless current-time transients for the chronoamperograms of Figure 4 in the main text are pictured in Figure S1, and compared to the theoretical responses for instantaneous and progressive nucleation as derived from the following equations –

$$\left(\frac{i}{i_m}\right)^2 = \frac{1.9542}{t/t_m} \{1 - \exp[-1.2564(t/t_m)]\}^2$$
(1)  
$$\left(\frac{i}{i_m}\right)^2 = \frac{1.2254}{t/t_m} \{1 - \exp\left[-2.3367(t/t_m)^2\right]\}^2$$
(2)

– where  $i_m$  and  $t_m$  refer to the maximum current and time response from the experimental chronoamperogram respectively. See main text for brief discussion.





<sup>t/t</sup>m **Figure S1.** Dimensionless chronoamperograms for the four studied bromide salt additives comparewd to the modelled response for instantaneous or progressive nucleation (Eq 1 and 2).

#### **EDX Data for Zinc electrodeposits**

EDX analysis was performed using a Zeiss EVO scanning electron microscope operating at 17 kV. The resulting spectra for each electrodeposit are shown in Figures S2 – S5. The primary EDX signal arises from the zinc K $\alpha$  line at 5 kV, with the next most abundant elements observed in the EDX spectrum belonging to tin, oxygen and silicon signals (summarised in Table S1) from the FTO glass substrate (see Experimental section for electrodeposition conditions). In the case of the more sparse zinc electrodeposits obtained from solutions containing the [C<sub>6</sub>MPyrr]Br and [N<sub>4,4,4</sub>]Br compounds, the response from the FTO glass was more prominent.



**Figure S2.** EDX spectra obtained from the zinc electrodeposit performed in 50 mM ZnBr2 : 50 mM [C<sub>2</sub>MPyrr]Br



Figure S3. EDX spectra obtained from the zinc electrodeposit performed in 50 mM ZnBr2 :  $50 \text{ mM} [C_6 \text{MPyrr}]\text{Br}$ 



Figure S4. EDX spectra obtained from the zinc electrodeposit performed in 50 mM ZnBr2 :  $50 \text{ mM} [N_{2,2,2,2}]Br$ 



Figure S4. EDX spectra obtained from the zinc electrodeposit performed in 50 mM ZnBr2 :  $50 \text{ mM} [N_{4,4,4,4}]Br$ 

| Table S   | I. Relative | abundance | (wt %) | ) of | elements | observed | in | the | EDX | spectrum | of | Zn |
|-----------|-------------|-----------|--------|------|----------|----------|----|-----|-----|----------|----|----|
| electrode | posits      |           |        |      |          |          |    |     |     |          |    |    |

| BSA:          | [C <sub>2</sub> MPyrr]Br | [C <sub>6</sub> MPyrr]Br | [N <sub>2,2,2,2</sub> ]Br | [N4,4,4,4]Br |
|---------------|--------------------------|--------------------------|---------------------------|--------------|
| Zn (K series) | 40.32                    | 36.22                    | 48.36                     | 31.11        |
| Sn (L series) | 31.77                    | 42.22                    | 33.30                     | 42.42        |
| O (K series)  | 14.59                    | 10.01                    | 7.61                      | 13.57        |
| Si (K series) | 5.14                     | 3.20                     | 3.41                      | 4.79         |
| Na (K series) | 4.16                     | 5.67                     | 4.80                      | 5.60         |
| C (K series)  | 2.98                     | 1.72                     | 1.47                      | 1.62         |
| Ca (K series) | 1.04                     | 0.96                     | 1.05                      | 0.89         |

### **Crystallographic Details**

## 1) $[N_{2,2,2,2}]_2[Zn_2Br_6]$

A colourless prismatic crystal was attached with Exxon Paratone N to a Hampton Research nylon loop. The crystal was quenched in a cold nitrogen gas stream from an Oxford Cryosystems Cryostream. An APEXII-FR591 diffractometer employing mirror monochromated MoKα radiation generated from a rotating anode was used for the data collection. Cell constants were obtained from a least squares refinement against 8162 reflections located between 6 and 56° 20. Data were collected at 150(2) Kelvin with  $\omega+\phi$  scans to 57° 20. Data were collected at 150(2) Kelvin with  $\omega+\phi$  scans to 62° 20. The data processing was undertaken with APEX, SAINT and XPREP<sup>[1]</sup> and subsequent computations were carried out with WinGX<sup>[2]</sup> and ShelXle.<sup>[3]</sup> An empirical absorption correction determined with SADABS<sup>[4]</sup> was applied to the data.

The structure was solved in the space group  $P2_1/n$  (#14) by direct methods with SIR97<sup>[5]</sup>, and extended and refined with SHELXL-14.<sup>[6]</sup> The asymmetric unit contains half a dizinchexabromide anion centred about an inversion site and a tertraethylammonium cation. The non-hydrogen atoms in the asymmetric unit were modelled with anisotropic displacement parameters and a riding atom model with group displacement parameters was used for the hydrogen atoms. An ORTEP<sup>[7]</sup> depiction of the molecule with 50% displacement ellipsoids is provided in Figure S6 (the asterix denotes inversion related sites with 1-x, -y, -z).

| , , , , , , , , , , , , , , , , , , , , |                                  |
|-----------------------------------------|----------------------------------|
| Formula of the Refinement Model         | $C_{16}H_{40}Br_6N_2Zn_2$        |
| Model Molecular Weight                  | 870.7                            |
| Crystal System                          | monoclinic                       |
| Space Group                             | <i>P</i> 2 <sub>1</sub> /n (#14) |
| a                                       | 8.9131(10) Å                     |
| b                                       | 10.4346(12) Å                    |
| C                                       | 15.6895(19) Å                    |
| β                                       | 104.580(7)º                      |
| V                                       | 1412.2(3) Å3                     |
| Dc                                      | 2.048 g cm-3                     |
| Ζ                                       | 2                                |
| Crystal Size                            | 0.089x0.070x0.053 mm             |
| Crystal Colour                          | colourless                       |
| Crystal Habit                           | prismatic                        |
| Temperature                             | 150(2) Kelvin                    |
| λ(ΜοΚα)                                 | 0.71073 Å                        |
| μ(ΜοΚα)                                 | 10.192 mm-1                      |
| T(SADABS)min,max                        | 0.846, 1.00                      |
| 2 <i>θ</i> max                          | 56.85º                           |
| hkl range                               | -11 11, -13 13, -20 20           |
| Ν                                       | 61940                            |
| Nind                                    | 3528( <i>R</i> merge 0.0911)     |
| Nobs                                    | 2915(I > 2 <sub>0</sub> (I))     |
| Nvar                                    | 122                              |
| Residuals* R1(F), wR2(F2)               | 0.0412, 0.1637                   |
| GoF(all)                                | 1.143                            |
|                                         |                                  |

**Table S2.** Crystallographic details for the [N<sub>2,2,2,2</sub>]<sub>2</sub>[Zn<sub>2</sub>Br<sub>6</sub>] crystal

\* $R1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$  for  $F_0 > 2\sigma(F_0)$ ;  $wR2 = (\Sigma w(F_0^2 - F_c^2)^2 / \Sigma (wF_c^2)^2)^{1/2}$  all reflections  $w=1/[\sigma^2(F_0^2) + (0.1P)^2 + 5.0P]$  where  $P=(F_0^2 + 2F_c^2)/3$ 



Figure S6. ORTEP representation of the  $[N_{2,2,2,2}]_2[Zn_2Br_6]$  crystal.

| Table S3. Non-Hydrogen Atom Coordinates, Isotropic Thermal Parameters and O | ccupancies |
|-----------------------------------------------------------------------------|------------|
|-----------------------------------------------------------------------------|------------|

| atom  | х          | У          | Z           | Ueq( Å2)    | Occ |
|-------|------------|------------|-------------|-------------|-----|
| Br(1) | 0.64944(8) | 0.11278(6) | -0.00972(4) | 0.02948(19) | 1   |
| Br(2) | 0.23381(7) | 0.25563(6) | -0.00887(4) | 0.02775(19) | 1   |
| Br(3) | 0.51645(7) | 0.12403(6) | 0.21185(4)  | 0.02517(18) | 1   |
| Zn(1) | 0.42744(7) | 0.10915(6) | 0.05746(4)  | 0.01782(18) | 1   |
| N(1)  | 0.0555(5)  | 0.0781(4)  | 0.2778(3)   | 0.0148(8)   | 1   |
| C(1)  | 0.2050(6)  | 0.0142(5)  | 0.3261(4)   | 0.0196(11)  | 1   |

| C(2) | 0.2970(7)  | 0.0836(7)  | 0.4072(4) | 0.0282(13) | 1 |
|------|------------|------------|-----------|------------|---|
| C(3) | 0.0919(6)  | 0.2097(5)  | 0.2471(4) | 0.0225(11) | 1 |
| C(4) | -0.0445(8) | 0.2781(6)  | 0.1863(5) | 0.0359(16) | 1 |
| C(5) | -0.0231(6) | -0.0059(5) | 0.1997(3) | 0.0179(10) | 1 |
| C(6) | 0.0662(7)  | -0.0161(6) | 0.1284(4) | 0.0278(13) | 1 |
| C(7) | -0.0547(6) | 0.0939(6)  | 0.3368(4) | 0.0219(11) | 1 |
| C(8) | -0.0926(7) | -0.0280(6) | 0.3786(4) | 0.0284(13) | 1 |
|      |            |            |           |            |   |

Table S4. Hydrogen Atom Coordinates, Isotropic Thermal Parameters and Occupancies

| atom  | x | У       |         | z      | Ueq( Å2) | Occ |
|-------|---|---------|---------|--------|----------|-----|
| H(1A) |   | 0.2715  | 0.0043  | 0.2846 | 0.024    | 1   |
| H(1B) |   | 0.1803  | -0.0728 | 0.3437 | 0.024    | 1   |
| H(2A) |   | 0.2323  | 0.0954  | 0.4487 | 0.042    | 1   |
| H(2B) |   | 0.3298  | 0.1674  | 0.3902 | 0.042    | 1   |
| H(2C) |   | 0.3886  | 0.0328  | 0.4353 | 0.042    | 1   |
| H(3A) |   | 0.1754  | 0.2008  | 0.2162 | 0.027    | 1   |
| H(3B) |   | 0.1322  | 0.2642  | 0.2996 | 0.027    | 1   |
| H(4A) |   | -0.1289 | 0.2865  | 0.2157 | 0.054    | 1   |
| H(4B) |   | -0.0807 | 0.2284  | 0.132  | 0.054    | 1   |
| H(4C) |   | -0.012  | 0.3635  | 0.172  | 0.054    | 1   |
| H(5A) |   | -0.1276 | 0.0292  | 0.1729 | 0.021    | 1   |
| H(5B) |   | -0.0368 | -0.0931 | 0.2216 | 0.021    | 1   |
| H(6A) |   | 0.1679  | -0.0548 | 0.1535 | 0.042    | 1   |
| H(6B) |   | 0.08    | 0.0697  | 0.1061 | 0.042    | 1   |
| H(6C) |   | 0.0078  | -0.0696 | 0.08   | 0.042    | 1   |
| H(7A) |   | -0.0085 | 0.1555  | 0.3841 | 0.026    | 1   |
| H(7B) |   | -0.1526 | 0.1318  | 0.3016 | 0.026    | 1   |
| H(8A) |   | 0.0009  | -0.06   | 0.4204 | 0.043    | 1   |
| H(8B) |   | -0.1304 | -0.0924 | 0.3329 | 0.043    | 1   |
| H(8C) |   | -0.1728 | -0.0106 | 0.4099 | 0.043    | 1   |

# Table S5. Anisotropic Thermal Parameters ( Å<sup>2</sup>)

| atom  | U(1,1)     | U(2,2)     | U(3,3)    | U(1,2)     | U(1,3)     | U(2,3)      |
|-------|------------|------------|-----------|------------|------------|-------------|
| Br(1) | 0.0316(4)  | 0.0251(3)  | 0.0346(4) | -0.0028(2) | 0.0134(3)  | 0.0000(2)   |
| Br(2) | 0.0234(3)  | 0.0203(3)  | 0.0373(4) | 0.0006(2)  | 0.0035(2)  | 0.0030(2)   |
| Br(3) | 0.0234(3)  | 0.0321(3)  | 0.0201(3) | -0.0032(2) | 0.0057(2)  | 0.0003(2)   |
| Zn(1) | 0.0186(3)  | 0.0160(3)  | 0.0197(3) | -0.0007(2) | 0.0064(2)  | -0.0001(2)  |
| N(1)  | 0.0130(19) | 0.0126(19) | 0.019(2)  | 0.0007(16) | 0.0041(16) | -0.0038(16) |
| C(1)  | 0.014(2)   | 0.023(3)   | 0.020(3)  | 0.003(2)   | 0.0011(19) | 0.002(2)    |
| C(2)  | 0.024(3)   | 0.035(3)   | 0.022(3)  | -0.003(2)  | -0.002(2)  | -0.002(2)   |
| C(3)  | 0.019(3)   | 0.014(2)   | 0.032(3)  | -0.004(2)  | 0.002(2)   | 0.000(2)    |

| C(4) | 0.028(3) | 0.020(3) | 0.052(4) | 0.002(2)    | -0.004(3)  | 0.010(3)    |
|------|----------|----------|----------|-------------|------------|-------------|
| C(5) | 0.020(2) | 0.015(2) | 0.016(2) | -0.0035(19) | 0.0003(19) | -0.0038(19) |
| C(6) | 0.034(3) | 0.029(3) | 0.022(3) | -0.009(3)   | 0.009(2)   | -0.007(2)   |
| C(7) | 0.018(3) | 0.026(3) | 0.024(3) | 0.000(2)    | 0.010(2)   | -0.005(2)   |
| C(8) | 0.030(3) | 0.029(3) | 0.032(3) | -0.004(2)   | 0.018(3)   | -0.005(3)   |

Table S6. Non-hydrogen bond lengths (Å)

| atom  | atom  | distance  | atom  | atom  | distance  |
|-------|-------|-----------|-------|-------|-----------|
| Br(1) | Zn(1) | 2.4653(9) | Br(1) | Zn(1) | 2.4768(9) |
| Br(2) | Zn(1) | 2.3439(9) | Br(3) | Zn(1) | 2.3566(9) |
| Zn(1) | Br(1) | 2.4769(9) | N(1)  | C(1)  | 1.512(6)  |
| N(1)  | C(3)  | 1.518(7)  | N(1)  | C(7)  | 1.518(7)  |
| N(1)  | C(5)  | 1.525(6)  | C(1)  | C(2)  | 1.514(8)  |
| C(3)  | C(4)  | 1.521(8)  | C(5)  | C(6)  | 1.531(8)  |
| C(7)  | C(8)  | 1.508(9)  |       |       |           |

## Table S7. Non-hydrogen bond angles (°)

| atom  | atom  | atom  | angle     |  |
|-------|-------|-------|-----------|--|
| Zn(1) | Br(1) | Zn(1) | 85.66(3)  |  |
| Br(2) | Zn(1) | Br(3) | 115.67(3) |  |
| Br(2) | Zn(1) | Br(1) | 112.37(3) |  |
| Br(3) | Zn(1) | Br(1) | 109.86(3) |  |
| Br(2) | Zn(1) | Br(1) | 111.02(3) |  |
| Br(3) | Zn(1) | Br(1) | 111.62(3) |  |
| Br(1) | Zn(1) | Br(1) | 94.35(3)  |  |
| C(1)  | N(1)  | C(3)  | 109.0(4)  |  |
| C(1)  | N(1)  | C(7)  | 111.5(4)  |  |
| C(3)  | N(1)  | C(7)  | 108.5(4)  |  |
| C(1)  | N(1)  | C(5)  | 108.5(4)  |  |
| C(3)  | N(1)  | C(5)  | 110.9(4)  |  |
| C(7)  | N(1)  | C(5)  | 108.4(4)  |  |
| N(1)  | C(1)  | C(2)  | 115.7(5)  |  |
| N(1)  | C(3)  | C(4)  | 115.0(5)  |  |
| N(1)  | C(5)  | C(6)  | 114.1(4)  |  |
| C(8)  | C(7)  | N(1)  | 115.1(5)  |  |

## Table S8. Hydrogen bond lengths (Å)

| atom | atom  | Distance | atom | atom  | Distance |
|------|-------|----------|------|-------|----------|
| C(1) | H(1A) | 0.99     | C(1) | H(1B) | 0.99     |
| C(2) | H(2A) | 0.98     | C(2) | H(2B) | 0.98     |
| C(2) | H(2C) | 0.98     | C(3) | H(3A) | 0.99     |

| C(3) | H(3B) | 0.99 | C(4) | H(4A) | 0.98 |
|------|-------|------|------|-------|------|
| C(4) | H(4B) | 0.98 | C(4) | H(4C) | 0.98 |
| C(5) | H(5A) | 0.99 | C(5) | H(5B) | 0.99 |
| C(6) | H(6A) | 0.98 | C(6) | H(6B) | 0.98 |
| C(6) | H(6C) | 0.98 | C(7) | H(7A) | 0.99 |
| C(7) | H(7B) | 0.99 | C(8) | H(8A) | 0.98 |
| C(8) | H(8B) | 0.98 | C(8) | H(8C) | 0.98 |
|      |       |      |      |       |      |

Table S9. Hydrogen bond angles (°)

| atom  | atom | atom  | angle |
|-------|------|-------|-------|
| N(1)  | C(1) | H(1A) | 108.4 |
| C(2)  | C(1) | H(1A) | 108.4 |
| N(1)  | C(1) | H(1B) | 108.4 |
| C(2)  | C(1) | H(1B) | 108.4 |
| H(1A) | C(1) | H(1B) | 107.4 |
| C(1)  | C(2) | H(2A) | 109.5 |
| C(1)  | C(2) | H(2B) | 109.5 |
| H(2A) | C(2) | H(2B) | 109.5 |
| C(1)  | C(2) | H(2C) | 109.5 |
| H(2A) | C(2) | H(2C) | 109.5 |
| H(2B) | C(2) | H(2C) | 109.5 |
| N(1)  | C(3) | H(3A) | 108.5 |
| C(4)  | C(3) | H(3A) | 108.5 |
| N(1)  | C(3) | H(3B) | 108.5 |
| C(4)  | C(3) | H(3B) | 108.5 |
| H(3A) | C(3) | H(3B) | 107.5 |
| C(3)  | C(4) | H(4A) | 109.5 |
| C(3)  | C(4) | H(4B) | 109.5 |
| H(4A) | C(4) | H(4B) | 109.5 |
| C(3)  | C(4) | H(4C) | 109.5 |
| H(4A) | C(4) | H(4C) | 109.5 |
| H(4B) | C(4) | H(4C) | 109.5 |
| N(1)  | C(5) | H(5A) | 108.7 |
| C(6)  | C(5) | H(5A) | 108.7 |
| N(1)  | C(5) | H(5B) | 108.7 |
| C(6)  | C(5) | H(5B) | 108.7 |
| H(5A) | C(5) | H(5B) | 107.6 |
| C(5)  | C(6) | H(6A) | 109.5 |
| C(5)  | C(6) | H(6B) | 109.5 |
| H(6A) | C(6) | H(6B) | 109.5 |
| C(5)  | C(6) | H(6C) | 109.5 |
| H(6A) | C(6) | H(6C) | 109.5 |
| H(6B) | C(6) | H(6C) | 109.5 |

| C(8)  | C(7) | H(7A) | 108.5 |
|-------|------|-------|-------|
| N(1)  | C(7) | H(7A) | 108.5 |
| C(8)  | C(7) | H(7B) | 108.5 |
| N(1)  | C(7) | H(7B) | 108.5 |
| H(7A) | C(7) | H(7B) | 107.5 |
| C(7)  | C(8) | H(8A) | 109.5 |
| C(7)  | C(8) | H(8B) | 109.5 |
| H(8A) | C(8) | H(8B) | 109.5 |
| C(7)  | C(8) | H(8C) | 109.5 |
| H(8A) | C(8) | H(8C) | 109.5 |
| H(8B) | C(8) | H(8C) | 109.5 |

### 2) $[C_6MPyrr]_3[Zn_2Br_7]$

A colourless tablet was attached with Exxon Paratone N to a nylon loop and quenched in a cold nitrogen gas stream from an Oxford Cryosystems Cryostream. A SuperNova Dual equipped with an Atlas detector and employing mirror monochromated Cu (K $\alpha$ ) radiation from a micro-source was used for the data collection. Cell constants were obtained from a least squares refinement against 15448 reflections located between 10 and 147° 20. Data were collected at 150(1) Kelvin with  $\omega$  scans to 154° 20. The data processing was undertaken with CrysAlis Pro<sup>[8]</sup> and subsequent computations were carried out with WinGX<sup>[2]</sup> and ShelXle.<sup>[3]</sup> A multi-scan absorption correction was applied<sup>[8]</sup> to the data.

The structure was solved in the space group *P*31c(#159) by direct methods with SHELXT<sup>[9]</sup> and extended and refined with SHELXL-2014/7.<sup>[6]</sup> The data were treated as being twinned about a two-fold axis parallel to the *c*-axis and additionally twinned by inversion, with the minor rotation twin fraction refining to 0.18, with the inversion twin fractions refining to 0.19 and 0.32. The asymmetric unit contains one third of a dizincheptabromo anion and a disordered N-hexyl-N-methylpyrrolidine cation. A rigid body was used to refine the methylpyrrolidine moiety and restraints were required for the hexyl residue. The hexyl residue is disordered over at least two orientations. Unresolved disorder is reflected in large displacement parameters. The occupancies of the resolved disorder sites were refined and then fixed. The metal sites of the anion are located on a threefold axis, whereas the bridging bromo is slightly displaced from, and accordingly disordered about this axis. Presumably reflecting steric constraints, the bromo displacement is not towards the nitrogen of the nearest N-hexyl-N-methylpyrrolidine cation. Instead the bromo is slightly displaced from the plane defined by the metal sites and the unique terminal bromo sites.

The non-hydrogen atoms in the asymmetric unit were modelled with anisotropic displacement parameters, while a riding atom model with group displacement parameters was used for the hydrogen atoms. An ORTEP<sup>[10]</sup> depiction of the molecule with 50% displacement ellipsoids is provided in Figure S7. The symmetry operators indicated by the atom label superscripts are (i) -y+1, x-y, z and (ii) -x+y+1, -x+1, z.

| Formula of the Refinement Model | C <sub>33</sub> H <sub>72</sub> Br <sub>7</sub> N <sub>3</sub> Zn <sub>2</sub> |
|---------------------------------|--------------------------------------------------------------------------------|
| Model Molecular Weight          | 1201.04                                                                        |

| Crystal System                | trigonal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Space Group                   | <i>P</i> 31c(#159)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| a                             | 14.7234(2) Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| b                             | 14.7234(2) Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| С                             | 12.4759(3) Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| γ                             | 120º                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| V                             | 2342.17(8) Å <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D <sub>c</sub>                | $1.703 \mathrm{g} \mathrm{cm}^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Z                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Crystal Size                  | 0.110x0.074x0.033 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Crystal Colour                | colourless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Crystal Habit                 | tablet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Temperature                   | 150(1) Kelvin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <i>λ</i> (Cu Kα)              | 1.5418 Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <i>μ</i> (Cu Kα)              | 8.429 mm <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| T <sub>min.max</sub>          | 0.616, 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $2\theta_{max}$               | 153.69º                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| hkl range                     | -18 18, -18 18, -15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ν                             | 50065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| N <sub>ind</sub>              | 3280(R <sub>merge</sub> 0.0443)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N <sub>obs</sub>              | 2634(I > 2σ(I))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N <sub>var</sub>              | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Residuals $* R1(F), wR2(F^2)$ | 0.0536, 0.1646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| GoF(all)                      | 1.234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Residual Extrema              | -0.756, 0.971 e <sup>-</sup> Å <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| *                             | $r_{2} = r_{2} = 2 r_{2} = 2 r_{2} r_{2} = 2 r_{2} r_{1} = 2 r_{2} r_{1} = 2 r_{2} r_{1} = 2 r_$ |

\* $R1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$  for  $F_0 > 2\sigma(F_0)$ ;  $wR2 = (\Sigma w(F_0^2 - F_c^2)^2 / \Sigma (wF_c^2)^2)^{1/2}$  all reflections



Figure S7. ORTEP representation of the  $[C_2MPyrr]_2[Zn_2Br_7]$  crystal.

|        |            |            | -,         |            |        |
|--------|------------|------------|------------|------------|--------|
| atom   | X          | У          | Z          | Ueq( Å2)   | Occ    |
| Br(1)  | 0.6177(4)  | 0.3131(10) | 0.3430(9)  | 0.1222(18) | 0.3333 |
| Br(2)  | 0.4884(2)  | 0.2345(3)  | 0.5857(3)  | 0.1020(9)  | 1      |
| Br(3)  | 0.4881(2)  | 0.2332(3)  | 0.0988(3)  | 0.0996(9)  | 1      |
| Zn(1)  | 0.6667     | 0.3333     | 0.5361(5)  | 0.0703(15) | 1      |
| Zn(2)  | 0.6667     | 0.3333     | 0.1497(5)  | 0.0724(18) | 1      |
| N(1)   | 0.4839(16) | 0.5178(15) | 0.3458(19) | 0.117(3)   | 1      |
| C(1)   | 0.466(3)   | 0.440(2)   | 0.2571(19) | 0.142(5)   | 1      |
| C(2)   | 0.358(4)   | 0.338(3)   | 0.294(3)   | 0.165(7)   | 1      |
| C(3)   | 0.354(4)   | 0.365(4)   | 0.410(4)   | 0.165(7)   | 1      |
| C(4)   | 0.460(3)   | 0.463(3)   | 0.451(2)   | 0.142(5)   | 1      |
| C(5)   | 0.4229(18) | 0.5717(17) | 0.335(2)   | 0.103(4)   | 1      |
| C(6)   | 0.600(2)   | 0.592(2)   | 0.309(2)   | 0.151(8)   | 1      |
| C(7)   | 0.654(2)   | 0.677(3)   | 0.391(3)   | 0.180(12)  | 1      |
| C(8A)  | 0.769(3)   | 0.712(9)   | 0.389(6)   | 0.22(3)    | 0.4    |
| C(9A)  | 0.827(3)   | 0.775(7)   | 0.485(6)   | 0.246(17)  | 0.4    |
| C(10A) | 0.760(4)   | 0.799(7)   | 0.557(5)   | 0.246(17)  | 0.4    |
| C(11A) | 0.823(8)   | 0.888(7)   | 0.633(7)   | 0.246(17)  | 0.4    |
| C(8B)  | 0.766(3)   | 0.751(3)   | 0.358(5)   | 0.203(17)  | 0.6    |
| C(9B)  | 0.826(3)   | 0.835(3)   | 0.440(7)   | 0.246(17)  | 0.6    |
| C(10B) | 0.791(5)   | 0.915(4)   | 0.445(5)   | 0.246(17)  | 0.6    |
| C(11B) | 0.837(8)   | 0.988(6)   | 0.539(6)   | 0.246(17)  | 0.6    |

 Table S11. Non-Hydrogen Atom Coordinates, Isotropic Thermal Parameters and Occupancies

| atom   | X      | У      | Z      | Ueq( Å2) | Occ |
|--------|--------|--------|--------|----------|-----|
| H(1A)  | 0.5243 | 0.4251 | 0.253  | 0.17     | 1   |
| H(1B)  | 0.4578 | 0.4663 | 0.1867 | 0.17     | 1   |
| H(2A)  | 0.2971 | 0.33   | 0.2532 | 0.198    | 1   |
| H(2B)  | 0.3621 | 0.2728 | 0.2873 | 0.198    | 1   |
| H(3A)  | 0.3383 | 0.3037 | 0.4546 | 0.198    | 1   |
| H(3B)  | 0.2964 | 0.3804 | 0.4185 | 0.198    | 1   |
| H(4A)  | 0.4482 | 0.502  | 0.5089 | 0.17     | 1   |
| H(4B)  | 0.5129 | 0.4442 | 0.4732 | 0.17     | 1   |
| H(5A)  | 0.3542 | 0.5235 | 0.3041 | 0.155    | 1   |
| H(5B)  | 0.4605 | 0.6329 | 0.2883 | 0.155    | 1   |
| H(5C)  | 0.4136 | 0.5946 | 0.406  | 0.155    | 1   |
| H(6A)  | 0.6366 | 0.552  | 0.301  | 0.181    | 1   |
| H(6B)  | 0.6003 | 0.6238 | 0.2385 | 0.181    | 1   |
| H(7A)  | 0.6251 | 0.65   | 0.4634 | 0.216    | 1   |
| H(7B)  | 0.6435 | 0.737  | 0.3751 | 0.216    | 1   |
| H(8A1) | 0.7774 | 0.6494 | 0.3837 | 0.266    | 0.4 |
| H(8A2) | 0.8007 | 0.7547 | 0.3233 | 0.266    | 0.4 |
| H(9A1) | 0.8537 | 0.7357 | 0.5269 | 0.295    | 0.4 |
| H(9A2) | 0.8887 | 0.8417 | 0.4616 | 0.295    | 0.4 |
| H(10A) | 0.7127 | 0.736  | 0.5988 | 0.295    | 0.4 |
| H(10B) | 0.7158 | 0.8174 | 0.5119 | 0.295    | 0.4 |
| H(11A) | 0.7756 | 0.901  | 0.6774 | 0.369    | 0.4 |
| H(11B) | 0.8658 | 0.8705 | 0.6788 | 0.369    | 0.4 |
| H(11C) | 0.869  | 0.9519 | 0.5918 | 0.369    | 0.4 |
| H(8B1) | 0.8016 | 0.7096 | 0.3469 | 0.244    | 0.6 |
| H(8B2) | 0.766  | 0.7837 | 0.2891 | 0.244    | 0.6 |
| H(9B1) | 0.9017 | 0.8706 | 0.4214 | 0.295    | 0.6 |
| H(9B2) | 0.8171 | 0.8023 | 0.5111 | 0.295    | 0.6 |
| H(10C) | 0.8124 | 0.9568 | 0.3778 | 0.295    | 0.6 |
| H(10D) | 0.714  | 0.8786 | 0.4497 | 0.295    | 0.6 |
| H(11D) | 0.8125 | 1.0387 | 0.5385 | 0.369    | 0.6 |
| H(11E) | 0.8157 | 0.9477 | 0.6055 | 0.369    | 0.6 |
| H(11F) | 0.9142 | 1.0259 | 0.5337 | 0.369    | 0.6 |

Table S12. Hydrogen Atom Coordinates, Isotropic Thermal Parameters and Occupancies

 Table S13.
 Anisotropic Thermal Parameters ( Å2)

|       | 1          | ( )        |            |            |  |
|-------|------------|------------|------------|------------|--|
| atom  | U(1,1)     | U(2,2)     | U(3,3)     | U(1,2)     |  |
| Br(1) | 0.193(4)   | 0.136(7)   | 0.0533(11) | 0.093(8)   |  |
| Br(2) | 0.0738(15) | 0.0979(18) | 0.123(2)   | 0.0347(15) |  |
| Br(3) | 0.0785(16) | 0.0976(18) | 0.115(2)   | 0.0379(15) |  |

| Zn(1)  | 0.080(3)  | 0.080(3)  | 0.051(2)  | 0.0401(13) |
|--------|-----------|-----------|-----------|------------|
| Zn(2)  | 0.080(3)  | 0.080(3)  | 0.057(3)  | 0.0400(15) |
| N(1)   | 0.158(9)  | 0.162(9)  | 0.085(5)  | 0.120(7)   |
| C(1)   | 0.209(12) | 0.160(11) | 0.113(7)  | 0.136(10)  |
| C(2)   | 0.211(13) | 0.163(13) | 0.181(12) | 0.138(11)  |
| C(3)   | 0.211(13) | 0.163(13) | 0.181(12) | 0.138(11)  |
| C(4)   | 0.209(12) | 0.160(11) | 0.113(7)  | 0.136(10)  |
| C(5)   | 0.137(10) | 0.129(10) | 0.078(8)  | 0.092(7)   |
| C(6)   | 0.168(11) | 0.176(15) | 0.160(19) | 0.125(11)  |
| C(7)   | 0.190(16) | 0.20(2)   | 0.19(3)   | 0.129(14)  |
| C(8A)  | 0.19(2)   | 0.21(7)   | 0.31(5)   | 0.13(2)    |
| C(9A)  | 0.25(2)   | 0.22(3)   | 0.32(4)   | 0.16(2)    |
| C(10A) | 0.25(2)   | 0.22(3)   | 0.32(4)   | 0.16(2)    |
| C(11A) | 0.25(2)   | 0.22(3)   | 0.32(4)   | 0.16(2)    |
| C(8B)  | 0.180(18) | 0.21(2)   | 0.27(4)   | 0.133(17)  |
| C(9B)  | 0.25(2)   | 0.22(3)   | 0.32(4)   | 0.16(2)    |
| C(10B) | 0.25(2)   | 0.22(3)   | 0.32(4)   | 0.16(2)    |
| C(11B) | 0.25(2)   | 0.22(3)   | 0.32(4)   | 0.16(2)    |

|  | Table S14 | Non H | ydrogen | Bond I | Lengths ( | ( Å) | ) |
|--|-----------|-------|---------|--------|-----------|------|---|
|--|-----------|-------|---------|--------|-----------|------|---|

| atom   | atom   | Distance  | atom   | atom   | Distance  |
|--------|--------|-----------|--------|--------|-----------|
| Br(1)  | Br(1)  | 1.086(8)  | Br(1)  | Br(1)  | 1.086(8)  |
| Br(1)  | Zn(1)  | 2.490(11) | Br(1)  | Zn(2)  | 2.492(11) |
| Br(2)  | Zn(1)  | 2.360(3)  | Br(3)  | Zn(2)  | 2.369(3)  |
| Zn(1)  | Br(2)  | 2.360(3)  | Zn(1)  | Br(2)  | 2.360(3)  |
| Zn(1)  | Br(1)  | 2.490(11) | Zn(1)  | Br(1)  | 2.490(11) |
| Zn(2)  | Br(3)  | 2.369(3)  | Zn(2)  | Br(3)  | 2.369(3)  |
| Zn(2)  | Br(1)  | 2.492(11) | Zn(2)  | Br(1)  | 2.492(11) |
| N(1)   | C(5)   | 1.471(15) | N(1)   | C(4)   | 1.49(3)   |
| N(1)   | C(1)   | 1.5169    | N(1)   | C(6)   | 1.57(3)   |
| C(1)   | C(2)   | 1.62(6)   | C(2)   | C(3)   | 1.50(5)   |
| C(3)   | C(4)   | 1.59(7)   | C(6)   | C(7)   | 1.504(7)  |
| C(7)   | C(8A)  | 1.505(10) | C(7)   | C(8B)  | 1.505(10) |
| C(8A)  | C(9A)  | 1.504(10) | C(9A)  | C(10A) | 1.504(10) |
| C(10A) | C(11A) | 1.504(10) | C(8B)  | C(9B)  | 1.504(10) |
| C(9B)  | C(10B) | 1.504(10) | C(10B) | C(11B) | 1.504(10) |

Table S15. Non Hydrogen Bond Angles (°)

| atom  | atom  | atom  | angle     | atom  | atom  | atom  | angle     |
|-------|-------|-------|-----------|-------|-------|-------|-----------|
| Br(1) | Br(1) | Br(1) | 60.003(4) | Br(3) | Zn(2) | Br(1) | 110.1(3)  |
| Br(1) | Br(1) | Zn(1) | 77.40(10) | Br(3) | Zn(2) | Br(1) | 91.17(19) |
| Br(1) | Br(1) | Zn(1) | 77.40(10) | Br(1) | Zn(2) | Br(1) | 25.2(2)   |

| Br(1) | Br(1) | Zn(2) | 77.41(12)  | Br(3)  | Zn(2)  | Br(1)  | 110.1(3)  |
|-------|-------|-------|------------|--------|--------|--------|-----------|
| Br(1) | Br(1) | Zn(2) | 77.41(12)  | Br(3)  | Zn(2)  | Br(1)  | 91.17(19) |
| Zn(1) | Br(1) | Zn(2) | 150.8(2)   | Br(3)  | Zn(2)  | Br(1)  | 114.5(3)  |
| Br(2) | Zn(1) | Br(2) | 113.38(13) | Br(1)  | Zn(2)  | Br(1)  | 25.2(2)   |
| Br(2) | Zn(1) | Br(2) | 113.38(13) | Br(1)  | Zn(2)  | Br(1)  | 25.2(2)   |
| Br(2) | Zn(1) | Br(2) | 113.38(13) | C(5)   | N(1)   | C(4)   | 109(2)    |
| Br(2) | Zn(1) | Br(1) | 109.9(3)   | C(5)   | N(1)   | C(1)   | 114.7(18) |
| Br(2) | Zn(1) | Br(1) | 90.80(17)  | C(4)   | N(1)   | C(1)   | 109(2)    |
| Br(2) | Zn(1) | Br(1) | 114.1(3)   | C(5)   | N(1)   | C(6)   | 109.9(18) |
| Br(2) | Zn(1) | Br(1) | 90.80(17)  | C(4)   | N(1)   | C(6)   | 121(2)    |
| Br(2) | Zn(1) | Br(1) | 114.1(3)   | C(1)   | N(1)   | C(6)   | 92(2)     |
| Br(2) | Zn(1) | Br(1) | 109.9(3)   | N(1)   | C(1)   | C(2)   | 102(2)    |
| Br(1) | Zn(1) | Br(1) | 25.20(19)  | C(3)   | C(2)   | C(1)   | 100(4)    |
| Br(2) | Zn(1) | Br(1) | 114.1(3)   | C(2)   | C(3)   | C(4)   | 114(5)    |
| Br(2) | Zn(1) | Br(1) | 109.9(3)   | N(1)   | C(4)   | C(3)   | 94(3)     |
| Br(2) | Zn(1) | Br(1) | 90.80(17)  | C(7)   | C(6)   | N(1)   | 109(2)    |
| Br(1) | Zn(1) | Br(1) | 25.20(19)  | C(6)   | C(7)   | C(8A)  | 108(3)    |
| Br(1) | Zn(1) | Br(1) | 25.20(19)  | C(6)   | C(7)   | C(8B)  | 110(3)    |
| Br(3) | Zn(2) | Br(3) | 113.09(13) | C(9A)  | C(8A)  | C(7)   | 112.8(14) |
| Br(3) | Zn(2) | Br(3) | 113.09(13) | C(10A) | C(9A)  | C(8A)  | 112.6(14) |
| Br(3) | Zn(2) | Br(3) | 113.09(13) | C(9A)  | C(10A) | C(11A) | 112.8(15) |
| Br(3) | Zn(2) | Br(1) | 91.17(19)  | C(9B)  | C(8B)  | C(7)   | 112.9(14) |
| Br(3) | Zn(2) | Br(1) | 114.5(3)   | C(8B)  | C(9B)  | C(10B) | 112.7(14) |
| Br(3) | Zn(2) | Br(1) | 110.1(3)   | C(11B) | C(10B) | C(9B)  | 112.8(14) |
| Br(3) | Zn(2) | Br(1) | 114.5(3)   |        |        |        |           |

## References

- 1. Bruker (2010); APEX, SAINT and XPREP. Area detector control and data integration and reduction software. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- 2. WinGX, Farrugia, L. J. (1999) J. Appl. Cryst., 32, 837-838.
- 3. ShelXle: a Qt graphical user interface for SHELXL; C. B. Hübschle, G. M. Sheldrick and B. Dittrich. J. Appl. Cryst. (2011). 44, 1281-1284.
- (a) Sheldrick, G.M.; SADABS. Empirical absorption correction program for area detector data. University of Göttingen, Germany, 1996. (b) Blessing, R.H.; Acta Cryst. (1995) A51 33 - 38.
- 5. Altomare A., Burla M.C., Camalli M., Cascarano G.L., Giacovazzo C., Guagliardi A., Moliterni A.G.G., Polidori G., Spagna R. J. Appl. Cryst. 1998, 32, 115-119.
- (a) Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8; (b) G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112-122.

- (a) Johnson, C.K.; ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee (1976). (b) Hall, S.R., du Boulay, D.J. & Olthof-Hazekamp, R. (1999) Eds. Xtal3.6 System . University of Western Australia.
- 8. CrysAlisPro Version 1.171.37.35. Agilent Technologies, 2015.
- 9. Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.
- ORTEP for Windows; L. J. Farrugia, J. Appl. Crystallogr., 1997, 30, 565. (b) ORTEP III; M. N. Burnett and C. K. Johnson, ORTEP-III Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA, 1996.