Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

## Catalytic behaviour of TiO<sub>2</sub>–ZrO<sub>2</sub> binary oxide synthesized by sol-gel process for glucose conversion to 5-hydroxymethylfurfural

Luqman Atanda,<sup>a</sup> Adib Silahua,<sup>b</sup> Swathi Mukundan,<sup>a</sup> Abhijit Shrotri,<sup>c</sup> Gilberto Torres-Torres<sup>b</sup> and Jorge Beltramini\*<sup>a</sup>

<sup>a</sup> Nanomaterials Centre, Australian Institute for Bioengineering and Nanotechnology and School of Chemical Engineering, The University of Queensland, Brisbane, Australia

<sup>b</sup> Universidad Juárez Autónoma de Tabasco, Mexico

<sup>c</sup> Catalysis Research Center, Hokkaido University, Sapporo, Japan

\*To whom correspondence should be addressed, E-mail: <u>j.beltramini@uq.edu.au</u>

Table S1 Comparison of fructose and glucose conversion to  ${\rm HMF}^a$ 

| Entry | Samples          | Substrate             | Conv. (%) | Yield (%) |                |
|-------|------------------|-----------------------|-----------|-----------|----------------|
|       |                  |                       |           | HMF       | Levulinic acid |
| 1     | TiO <sub>2</sub> | Fructose <sup>b</sup> | 95.3      | 24.1      | 1.24           |
|       |                  | Glucose               | 86.0      | 16.1      | 2.46           |
| 2     | ZrO <sub>2</sub> | Fructose <sup>b</sup> | 85.6      | 29.6      | 0.31           |
|       |                  | Glucose               | 72.2      | 22.9      | 0.93           |

 $<sup>^</sup>a$ Reaction conditions: 2 g substrate, 100 ml water, 0.8 g catalyst wt., 3 h reaction time, 175 °C temperature.  $^b$ 160 °C temperature, 5 h reaction time.

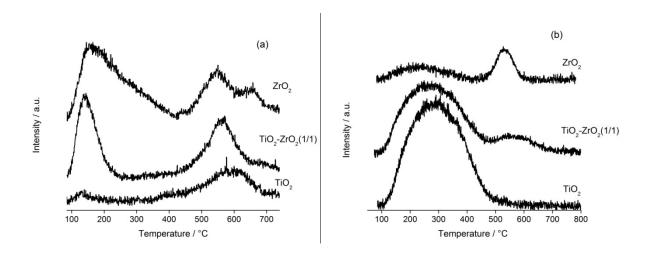



Fig. S1 a)  ${\rm CO_2}$  and b) Ammonia temperature programmed desorption profiles of the metal oxides.

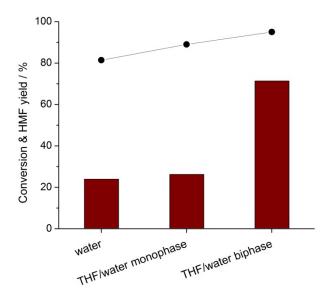



Fig. S2 Role of reaction medium on glucose conversion to HMF catalyzed by  $TiO_2$ – $ZrO_2$  (1/1). Reaction conditions: 2 g glucose, 0.8 g catalyst wt., 100 ml solvent, 4 g NaCl, 3 h reaction time, reaction temperature 175 °C.

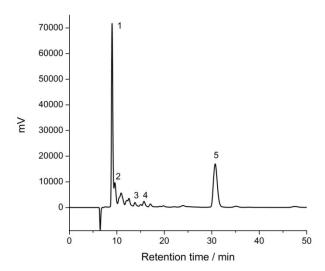



Fig. S3 HPLC analytical profile measured using RID detector for glucose to HMF reaction using  $TiO_2$ – $ZrO_2$  (1/1) in aqueous reaction medium. Reaction conditions: 2 g glucose, 0.8 g catalyst wt., 100 ml solvent, 3 h reaction time, reaction temperature 175 °C. 1) glucose, 2) fructose, 3) formic acid, 4) levulinic acid and 5) 5-hydroxymethyfurfural

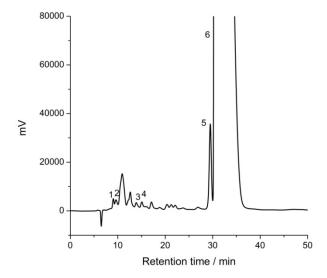



Fig. S4 HPLC analytical profile measured using RID detector for glucose to HMF reaction using  $TiO_2$ – $TrO_2$  (1/1) in water/THF monophase reaction medium. Reaction conditions: 2 g glucose, 0.8 g catalyst wt., 100 ml solvent (water/THF = 1/4 v/v), 3 h reaction time, reaction temperature 175 °C. 1) glucose, 2) fructose, 3) formic acid, 4) levulinic acid, 5) 5-hydroxymethyfurfural and 6) tetrahydrofuran

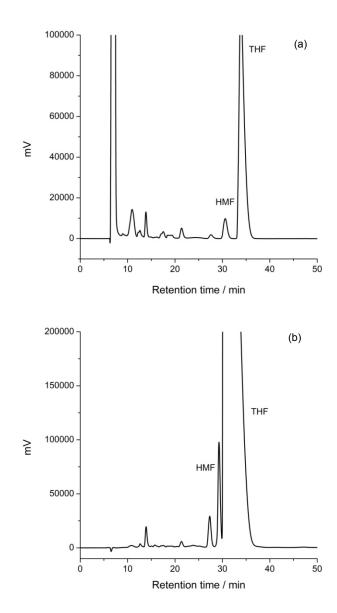



Fig. S5 HPLC analytical profile measured using RID detector for glucose to HMF reaction using  $TiO_2$ – $TrO_2$  (1/1) in water/THF biphase reaction medium. Reaction conditions: 2 g glucose, 0.8 g catalyst wt., 100 ml solvent (THF/water = 4/1 v/v), 4 g NaCl, 3 h reaction time, reaction temperature 175 °C. a) aqueous phase and b) organic phase.

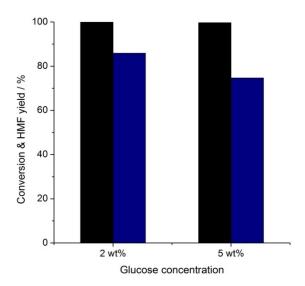



Fig. S6 Influence of initial glucose concentration on HMF yield. Reaction conditions: glucose/catalyst = 2.5 w/w, catalysts =  $TiO_2$ – $TrO_2$  (1/1) and Amberlyst 70 (1/1 w/w), 100 ml solvent (THF/water = 4/1 v/v), 4 g NaCl, 3 h reaction time, 175 °C reaction temperature.