Electronic Supplementary Information

Efficient Inorganic Solar Cells from Aqueous Nanocrystals: The Impact of Composition on Carrier Dynamics

By Zhaolai Chen^a, Qingsen Zeng^a, Fangyuan Liu^a, Gan Jin^a, Xiaohang Du^a,

Jianglin Du^b, Hao Zhang^a and Bai Yang^a*

^aState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

^bState Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, P. R. China

E-mail: <u>byangchem@jlu.edu.cn</u>

Figure S1. (a) Transient absorption decay kinetics of CdTe NCs films with different annealing temperature probed at 825 nm and (b) its magnification in the range of 1-5 ps. (c) Transient absorption decay kinetics of CdTe NCs films with different annealing temperature probed at 510 nm and (d) its magnification in the range of 1-5 ps. The excitation light is 800 nm.

Figure S2. J-V characteristics of the CdTe NCs solar cells with different thickness in the dark. The annealing temperature is 300 °C.

Figure S3. J-V characteristics of the CdTe NCs solar cells with different annealing temperature. The thickness of the active layer is 240 nm.

Figure S4. The UPS spectrum of the TiO_2 film. The corresponding energy levels are calculated as follows:

Work function=21.2-16.9=4.3 eV, VB=4.3+3.4=7.7 eV, CB=7.7-3.2=4.5 eV

The CB is very close to the work function, which implies the TiO_2 film is highly n-type.