Influence of Electronic *vs.* Steric Factors on the Solid-State Photochromic Performances of New Polyoxometalate/Spirooxazine and Spiropyran Hybrid Materials

Clotilde Menet, Hélène Serier-Brault, Olivier Oms, Anne Dolbecq, Jérôme Marrot, Ali Saad, Pierre Mialane,* Stéphane Jobic, Philippe Deniard and Rémi Dessapt*

Electronic Supplementary Information

Figure S1. Comparison of TGA measurments of (a) $SN(NO_3)$, SN_2Mo_6 and SN_2W_6 , and (b) $SP(NO_3)$, SP_2Mo_6 and SP_2W_6

Fig. S2. Comparison of the FT-IR spectra of (a) SN₂W₆ and (b) SN₂Mo₆.

In the spectra of SN_2W_6 and SN_2Mo_6 , the strong absorption band in the range 1000-400 cm⁻¹ are attributed to the M=O and M-O-M vibration modes of the $[M_6O_{19}]^{2-}$ anions. In addition, the spectra of SN_2W_6 and SN_2Mo_6 do not show any absorptions around 1670 cm⁻¹, that are characteristic of the C=O vibration of the DMF molecule.

Fig. S3. Normalized Kubelka-Munk transformed reflectivity spectra before UV irradiation of (a) **SN₂Mo₆** (black), SN(NO₃) (magenta) and (TBA)₂[Mo₆O₁₉] (blue), and (b) **SN₂W₆** (black), SN(NO₃) (magenta) and (TBA)₂[W₆O₁₉] (blue). The $\Delta\lambda$ parameter defined as $\Delta\lambda = \lambda_{max}^{(spiro)} - \lambda_{max}^{(POM)}$, with $\lambda_{max}^{(POM)}$ the low-energy LMCT transition of the POM unit. The absorption denoted by an asterisk in the spectrum of SN(NO₃) is assignable to an intermolecular charge-transfer transition between SN and NO₃⁻ molecules due to their proximity in the crystalline state.

Fig. S4. UV-vis spectra in DMSO before UV irradiation of (a) SN_2W_6 (black), $SN(NO_3)$ (red) and $(TBA)_2[W_6O_{19}]$ (blue), (b) SN_2Mo_6 (black), $SN(NO_3)$ (red) and $(TBA)_2[Mo_6O_{19}]$ (blue), (c) SP_2W_6 (black), $SP(NO_3)$ (red) and $(TBA)_2[W_6O_{19}]$ (blue), and (d) SP_2Mo_6 (black), $SP(NO_3)$ (red) and $(TBA)_2[W_6O_{19}]$ (blue), and (d) SP_2Mo_6 (black), $SP(NO_3)$ (red) and $(TBA)_2[Mo_6O_{19}]$ (blue).

Fig. S5. Photographs of the microcrystalline powders of SN_2W_6 , SN_2Mo_6 , SP_2W_6 and SP_2Mo_6 before UV irradiation.

Fig. S6. Temporal evolution of the photogenerated absorption of SN_2Mo_6 after 0, 0.166, 0.333, 0.5, 1, 2, 3, 6, 10, 15, 20 and 30 min of 365 nm-UV irradiation.

Fig. S7. (a) Comparison of the temporal evolutions at room temperature of the absorbance at 590 nm for SP_2W_6 under orange light ($\lambda_{ex} = 590$ nm) (\blacktriangle) and in the dark (\bigcirc) for a sample initially irradiated for 20 min with UV light ($\lambda_{ex} = 365$ nm) (\blacksquare). The dashed line shows the absorbance value just before switching off the UV light. (b) Evolution of the absorbance monitored at 590 nm for SP_2W_6 during successive coloration/bleach cycles at room temperature. For one cycle, the sample has been exposed to UV irradiation ($\lambda_{ex} = 365$ nm) for 2 min, and then to orange light ($\lambda_{ex} = 590$ nm) for 7 min. The red line corresponds to the linear fit of $Abs^{590}(n) vs n$ ($R^2 = 0.960$).

Table S1. Photocoloration kinetic parameters of SP₂Mo₆, SP₂W₆, SN₂Mo₆ and SN₂W₆.

	SP₂Mo ₆	SP ₂ W ₆	SN ₂ Mo ₆	SN ₂ W ₆
$\lambda_{\max}^{(MC)}$ (nm) ^a	590	590	620	620
A_1^{b}	0.330	0.588	0.339	1.393
A_2^{b}	0.036	0.377	0.027	0.315
k ^c ₁ x10 ³ (s ⁻¹) ^c	0.6	13.4	0.6	10.5
k ^c ₂ x10 ³ (s ⁻¹) ^c	9.4	3.6	12.4	125.5
R^{2d}	0.9993	0.9997	0.9998	0.9995
t _{1/2} (min) ^e	15	1.3	16	0.8

^{*a*}Photoinduced absorption band wavelength of the merocyanin form of the spiro-molecule. ^{*b*}The Abs^{λmax}(*t*) vs *t* plots were fitted as Abs^{λmax}(*t*) = $-A_1 - A_2 + A_1 \exp(-k_1^c t) + A_2 \exp(-k_2^c t)$. ^{*c*}Coloration rate constants. ^{*d*}Regression coefficient for the Abs^{λmax}(*t*) vs *t* plots. ^{*e*}coloration half-life time.

Tab	le S2.	Fading	kinetic	parameters	of SN	V_2W_6	and s	SP_2W_6 .
-----	--------	--------	---------	------------	-------	----------	-------	-------------

Fading under yellow light				
	SN ₂ W ₆	SP ₂ W ₆		
λ _{max} ^a (nm)	620	590		
A ₀	1.691	0.850		
A ₁ ^b	0.972	0.699		
A ₂ ^b	0.66	0.135		
$k_{1}^{c} \times 10^{3} (s^{-1})^{c}$	48.8	71.3		
$k_{2}^{c} \times 10^{3} (s^{-1})^{c}$	3.3	7.7		
R^{2d}	0.9960	0.9997		

Thermal fading				
	SN ₂ W ₆	SP ₂ W ₆		
λ_{\max}^{a} (nm)	620	590		
A ₀	1.717	0.863		
A ₁ ^b	0.027	0.033		
A_2^{b}	0.070	0.066		
k ^c ₁ ×10 ³ (s ⁻¹) ^c	33.9	44.0		
$k_{2}^{c} \times 10^{3} (s^{-1})^{c}$	0.3	0.3		
R^{2d}	0.9970	0.9981		

^{*a*}Photoinduced absorption band wavelength. ^{*b*}The Abs^{λmax}(*t*) *vs t* plots were fitted as Abs^{λmax}(*t*) = (A₀-A₁-A₂) + A₁exp(-k^f₁t) + A₂exp(-k^f₂t). ^{*c*}Coloration rate constants. ^{*d*}Regression coefficient for the Abs^{λmax}(*t*) *vs t* plots.