## Electronic Supplementary Information

## Biodegradable containers composed of anionic liposomes and cationic polypeptide vesicles

Alexander A. Yaroslavov\*, Olga V. Zaborova, Andrey V. Sybachin, Irina V. Kalashnikova, Ellina Kesselman, Judith Schmidt, Yeshayahu Talmon, April R. Rodriguez, Timothy J. Deming



**Figure S1**. Block copolypeptide for cationic vesicle preparation (A) and schematic presentation of  $K_{60}L_{20}$  self-assembly into vesicles (B).



**Figure S2**. Distribution of CPV particles by size obtained with use of dynamic light scattering. Copolymer concentration 0.05 mg/mL;  $[Lys+]_{outer} = 1 \times 10^{-4} \text{ M}$ ;  $10^{-3} \text{ M}$  TRIS buffer, pH 7.



**Figure S3**. Lipids (schematical presentation): 1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC (A), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine, POPS<sup>1-</sup> (B), 1,2-dioleoylsn-glycero-3-phosphoethanolamine-N-(1-pyrenesulfonyl), pyrene-PE (C), 1,2-dimyristoyl-snglycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl), Rh-PE (D).



**Figure S4**. Fluorescence intensity in supernatants after separation of liposome/CPV complex vs. v=0.1 DOPC/POPS<sup>1-</sup> liposome concentration. Copolymer concentration 0.05 mg/mL;  $[Lys^+]_{outer} = 1 \times 10^{-4}$  M;  $10^{-3}$  M TRIS buffer, pH 7.

## (S1) Liposome preparation

Small unilamellar anionic liposomes were prepared by the standard sonication procedure: appropriate amounts of DOPC and POPS<sup>1-</sup> solutions in methanol were mixed in a flask, after which the solvent was evaporated under vacuum. A thin lipid film was dispersed in a TRIS buffer (pH 7.0,  $10^{-3}$  M) for 600s with a 4700 Cole-Parmer ultrasonic homogenizer. Liposome samples were separated from titanium dust by centrifugation for 5 min at 10,000 rpm and used within one day. Liposomes with a molar fraction of anionic POPS<sup>1-</sup> head-groups v = 0.1 were thus obtained. According to the DLS measurements, the size of liposomes varied from sample to sample but always retained within 40-60 nm interval.

Liposomes with a fluorescent dye incorporated into the membrane, were prepared by the same procedure, except 0.05 wt.% of pyrene-PE or Rh-PE was added to the lipid mixture solution before methanol evaporation. The fluorescence intensity of the labeled liposome suspensions was detected with a F-4000 Hitachi fluorescence at  $\lambda em = 379$  nm ( $\lambda ex = 347$  nm) for pyrene-labeled liposomes and at  $\lambda em = 571$  nm ( $\lambda ex = 557$  nm) for rhodamine-labeled liposomes. Liposomes loaded with a NaCl solution were prepared by suspending and sonicating DOPC/POPS<sup>1-</sup> lipid film in a 10<sup>-3</sup> M TRIS buffer solution additionally contained 1M NaCl. The liposome suspension was separated from the excess of external NaCl by dialysis against 10<sup>-3</sup> M TRIS buffer.