ESI

9-N-alkylaminomethylanthracene probes for selective fluorescence sensing of pentafluorophenol

Anup Pandith, Ashwani Kumar and Hong-Seok Kim*

Department of Applied Chemistry, School of Applied Chemical Engineering, Kyungpook

National University, Daegu 702-701,

Republic of Korea

Corresponding author: Tel.:+82 53 9505588; fax: +82 53 9506594.

E-mail address: kimhs@knu.ac.kr

Contents:

1.	¹ H and ¹³ C NMR spectrum of probes 1 and 2
2.	HRMS spectra of probes 1 and 2
3.	Fluorescence emission behavior of probe 1 in different solvent systems
4.	Fluorescence emission behaviour of probe 1 at different excitation wavelength
5.	Fluorescence studies of probe 1 with miscellaneous phenol derivatives
6.	Detection limit of PFP with probe 1
7.	Normalized fluorescence enhancement ratio's of probe 1 with PFP and TFP
8.	Fluorescence titration studies of probe 1 with TFP9
9.	Fluorescence studies of probe 1 with phenol derivatives at $\lambda_{ex} = 385$ nm in EtOH9
10	. Fluorescence titration studies of probe 1 with PFP at $\lambda_{ex} = 385$ nm in EtOH10
11	. UV-vis spectra of probe 2 with various halophenol derivatives10
12	. Fluorescence emission behavior of probe 2 at different excitation wavelength

13. Fluorescence studies of probe 2 with halophenol derivatives	11
14. Fluorescence titration spectra of probe 2 with PFP and TFP	.12
15. Job's plot experiments of probe 2 with PFP and TFP in EtOH	.13
16. Relative fluorescence enhancement ratio's of probe 1 and 2 with various halophenols	13
17. Fluorescence titration studies of probe 1 with PFP in DMSO	.14
18. Interference studies of other halophenolswith probe 1 in presence of PFP	.14
19. HOMO, LUMO of PFP, TFP, probe 2 and its complexes with PFP and TFP	14
20. Association constant and quantum yield calculation studies of probes 1 and 2	15

Preparation of the buffer solution. The solid standard buffer was used without purification. Respective solid buffers dissolved in EtOH-H₂O mixture (9:1 v/v) and the exact pH value was obtained by adjusting the using solution of 0.001 M NaOH. All pH value was measured in digital pH meter instrument.

pH Dependent fluorescence studies: pH was maintained using the following solutions [all 0.01 M in EtOH-H₂O (9:1)] : trichloroacetate (pH 1); dichloroacetate (pH 2); chloroacetate (pH 3); acetate (pH 4 and 5); MES (pH 6); HEPES (pH 7 and 8); CHES (pH 9); CAPS (pH 10 and 11); TBAH (pH 12); NaOH (pH 13);

Abbreviations: Tetrabutylammoniumhydroxide (TBAH), 4-morpholineethanesulfonic acid sodium salt (MES), 4-(2-hydroxyethyl)piperazine-1-ethanesulfonicacid (HEPES), 2- (cyclohexylamino)ethanesulfonicacid (CHES), 3-cyclohexylamino-1-propanesulfonic acid (CAPS).

The fluorescence readings were obtained with maintaining constant pH using various standard buffer solutions*. Each fluorescence reading was taken and recorded after getting 3 concordant values.

Fig. S1. Fluorescence enhancement of probe 1 (20 μ M) with PFP (20 μ M) in different solvent system: $\lambda_{ex} = 365$ nm, $\lambda_{em} = 417$ nm.

Fig. S2. Fluorescence emission behaviour of probe 1 (20 μ M) at different excitation wavelength in EtOH.

Fig. S3. Fluorescence studies of probe 1 (20 μ M) with various miscellaneous phenol derivatives (200 μ M) in EtOH: λ_{ex} = 365 nm.

Fig. S4. Fluorescence enhancement response of probe 1 (20 μ M) with various concentrations of PFP in EtOH at pH = 7.0 (HEPES): λ_{ex} = 365 nm and λ_{em} = 417 nm.

Fig. S5. Normalized fluorescence enhancement ratio $[I-I_0/I_0] \ge 100$, vs $[G]^*$, where I_0 represents the fluorescence emission of probe 1, observed with 0.0 to 5.0 eq. of *PFP and *TFP at $\lambda_{ex} = 365$ nm, $\lambda_{em} = 417$ nm.

Fig. S6. a) Fluorescence titration studies of probe 1 (20 μ M) with TFP (200 μ M) at $\lambda_{ex} = 365$ nm in EtOH: Inset represents normalized fluorescence intensity vs eq. of TFP at $\lambda_{em} = 417$ nm.

Fig. S7. a) Fluorescence spectra of probe 1 (20 μ M) with various phenol derivatives (200 μ M) at $\lambda_{ex} = 385$ nm in EtOH: b) Fluorescence titration spectra of probe 1 with PFP: Inset represents normalized fluorescence intensity *vs* equivalents of PFP at $\lambda_{ex} = 385$ nm and $\lambda_{em} = 417$ nm.

Fig. S8. a) UV-Visible spectra of probe 2 (20 μ M) in EtOH with various halophenol derivatives (10 eq.)

Fig. S9. Fluorescence emission behaviour of probe 2 (20 μ M) at different excitation wavelength in EtOH.

Fig. S10. Fluorescence spectra of probe **2** (20 μ M) with halophenol derivatives (10 eq.): λ_{ex} = 365 nm in EtOH.

Fig. S11. a) Fluorescence titration studies of probe 2 (20 μ M) with PFP (200 μ M) at $\lambda_{ex} = 365$ nm in EtOH: Inset represents normalized fluorescence intensity of probe 2 *vs* equivalents of PFP at $\lambda_{em} = 417$ nm. b) Fluorescence titration studies of probe 2 (20 μ M) with TFP (200 μ M) at $\lambda_{ex} = 365$ nm in EtOH: Inset represent normalized fluorescence intensity of probe 2 *vs* equivalents of TFP at $\lambda_{em} = 417$ nm.

Fig. S12. Job's plot of probe **2** with a) PFP and b) TFP (20 μ M) in EtOH: $\lambda_{ex} = 365$ nm, $\lambda_{em} = 417$ nm.

Fig. S13. Fluorescence enhancement ratio $[I-I_0/I_0] \ge 100$ of probes 1 and 2 with a) PFP and b) TFP (20 μ M) in EtOH: $\lambda_{ex} = 365$ nm, $\lambda_{em} = 417$ nm. I = Intensity of probe in presence of halophenols, I_0 = Intensity of probe in the absence of halophenol at 417 nm.

Fig. S14. Fluorescence titration spectra of probe 1 (20 μ M) with PFP (200 μ M) in DMSO: λ_{ex} = 365 nm: Inset represents normalised fluorescence intensity of probe 1 vs equivalents of PFP at λ_{em} = 417 nm.

Fig. S15. Changes in relative fluorescence enhancement ratio $[I_0-I/I_0] \ge 100$ of probe 1•PFP complex in the presence of other halophenol derivatives: $\lambda_{ex} = 365$ nm, $\lambda_{em} = 417$ nm in EtOH.

Fig. S16. HOMO and LUMO of PFP, TFP, probe **2**, **2**•PFP, and **2**•TFP calculated by the B3LYP/6-31G* method in EtOH medium.

Association constant calculations

The fluorescence titration data were programmed in *gnuplot ver*. 4 software as mentioned below*.Thus obtained intensity was fitted automatically (reduced chisquare method) with least error bound.

*Equation 2.

 $I = I_0 + I_{\infty}K_n [Guest]^n / 1 + K_n [Guest]^n$

I = Intensity (calculated as a function of Y). $I_0 = Intensity$ at host only. $I_{\infty} = Intensity$ at the saturation. n value depending on the stoichiometric ratio's between host and guest ex: binding is 1:1 then n=1, 1:2 then n=2 and so on.