Electronic Supplementary Information (ESI) Enhancement of icephobic properties based on UV-curable fluorosilicone copolymer films

Xiaohui Li,^a Kaiqiang Zhang,^a Yunhui Zhao,^a Kongying Zhu,^b Xiaoyan Yuan^{*a}

^a School of Materials Science and Engineering, Tianjin Key Laboratory of Composite

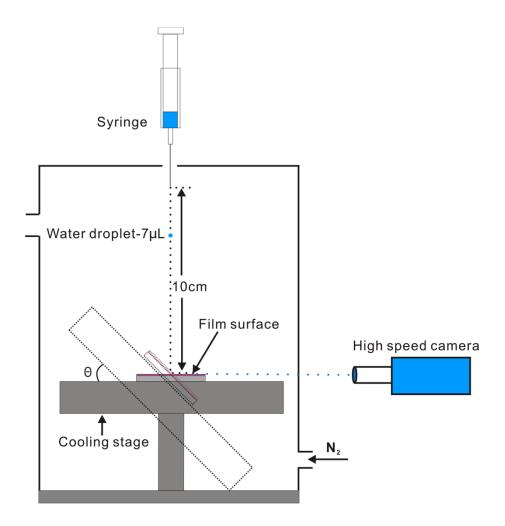
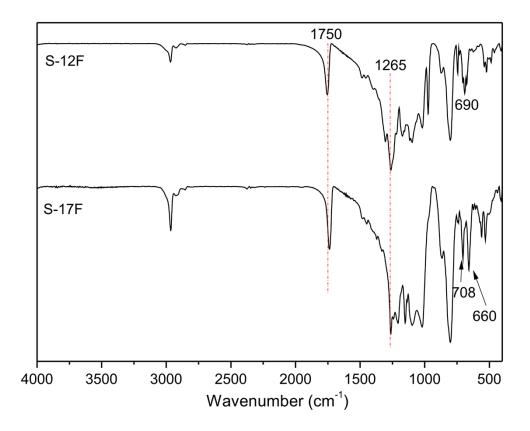
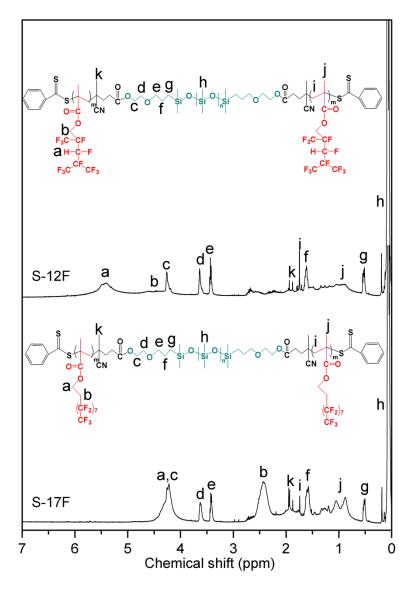
and Functional Materials, Tianjin University, Tianjin 300072, China

^b Analysis and Measurement Center, Tianjin University, Tianjin 300072, China

*Corresponding author: yuanxy@tju.edu.cn or xyuan28@yahoo.com

Sample	PDMS-SH	OVPOSS	PDMS- <i>b</i> -(PFMA-SH) ₂
	(g)	(g)	(g)
F0%	1.0	0.1	-
12F1%	1.0	0.1	0.01
12F3%	1.0	0.1	0.03
12F5%	1.0	0.1	0.05
12F10%	1.0	0.1	0.1
12F20%	1.0	0.1	0.2
12F30%	1.0	0.1	0.3
12F40%	1.0	0.1	0.4
12F50%	1.0	0.1	0.5
12F60%	1.0	0.1	0.6
17F1%	1.0	0.1	0.01
17F3%	1.0	0.1	0.03
17F5%	1.0	0.1	0.05
17F10%	1.0	0.1	0.1
17F20%	1.0	0.1	0.2
17F30%	1.0	0.1	0.3
17F40%	1.0	0.1	0.4
17F50%	1.0	0.1	0.5
17F60%	1.0	0.1	0.6

 Table S1 Compositions of UV-curable films containing fluorosilicone copolymers.

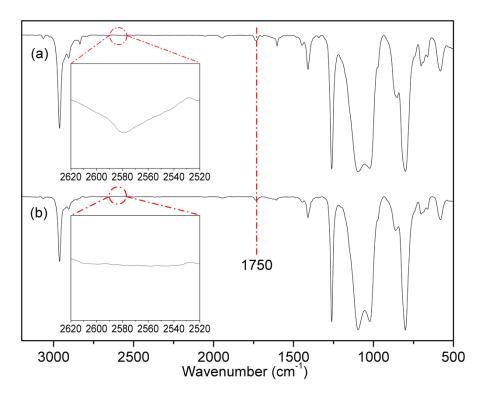

Fig. S1 Schematic diagram of water droplets dropping on the sample surface.

Fig. S2 FT-IR spectra of the prepared **S-12F** and **S-17F** block copolymers. The peak at 1750 cm⁻¹ was assigned to C=O stretching vibration. The absorbances at 1265 cm⁻¹ and 1010~1120 cm⁻¹ were attributed to the Si-CH₃ stretching vibration and Si-O-Si asymmetric stretching vibration, respectively, which were characteristic signals of PDMS. The absorption peaks at 690 cm⁻¹ for wagging vibrations of C–F bonds was observed in the spectra of **S-12F**. For **S-17F**, the absorbances at 660 cm⁻¹ and 708 cm⁻¹ were attributed to the rocking and wagging vibrations of CF₂ groups.

Fig. S3 ¹H NMR spectra of the prepared **S-12F** and **S-17F** block copolymers. The signals of $\delta_{\rm H}$ in PDMS block were observed at 0.1 ppm for the -Si–CH₃ group. The characteristic $\delta_{\rm H}$ signals of -O-C<u>H₂</u>-CH₂-O-C=O and -CH₂C<u>H₂</u>OCH₂- groups next to PDMS block were found at 3.6 ppm and 3.4 ppm, respectively, indicating successful esterification of CPADB with HO-PDMS-OH. The typical $\delta_{\rm H}$ in P12FMA block were observed at 5.2–6.6 ppm and 4.2–4.6 ppm for –C<u>H</u>F and -C<u>H₂</u>-CFCF₃- groups correspondingly in the spectra of **S-12F**. The signals of $\delta_{\rm H}$ at 4.0–4.5 ppm and 2.2–2.6 ppm in the spectra of **S-17F** were assigned to -<u>CH₂</u>-O- and -C<u>H₂-CF₂- groups in P17FMA block, respectively.</u>

Fig. S4 FT-IR spectra of the **17F10%** film (a) before and (b) after UV curing, suggesting absorbance changes of the thiol group. The absorbance at 1750 cm⁻¹ was attributed to the C=O stretching vibration belong to **S-17F**. The absorbance at 2580 cm⁻¹, associated with the S–H group, disappeared after UV curing, indicating that the S–H group had reacted during the photo-curing polymerization.

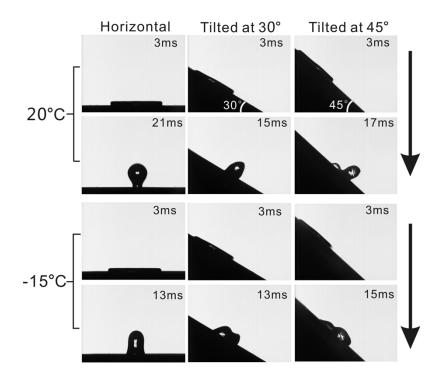


Fig. S5 High speed digital camera images of the dynamic behavior of 7- μ L water droplets dropping on the horizontal and tilted (30°, 45°) 12F50% surface from a 10 cm height at 20°C and -15°C, respectively.

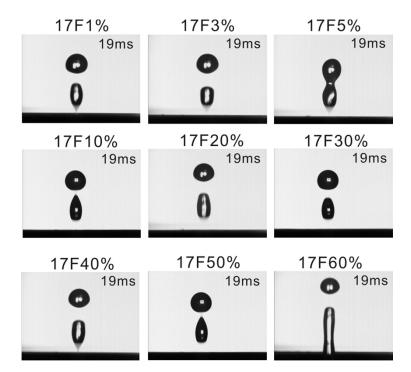


Fig. S6 High speed digital camera images of the dynamic behavior of $7-\mu L$ water droplets dropping on the horizontal P17FMA-containing UV-curable film surfaces from a 10 cm height at -15°C.

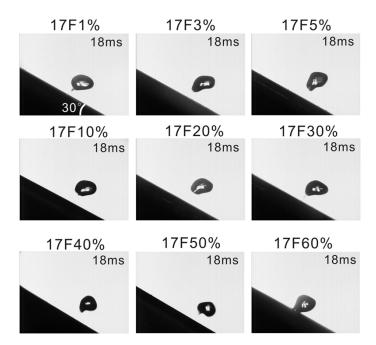
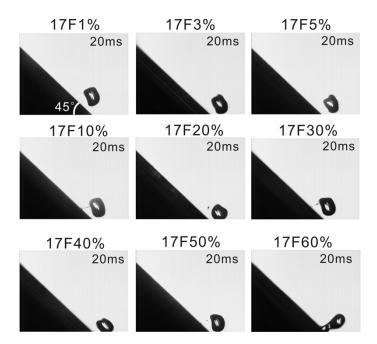



Fig. S7 High speed digital camera images of the dynamic behavior of $7-\mu L$ water droplets dropping on the 30° tilted P17FMA-containing UV-curable film surfaces from a 10 cm height at -15°C.

Fig. S8 High speed digital camera images of the dynamic behavior of $7-\mu L$ water droplets dropping on the 45° tilted P17FMA-containing UV-curable film surfaces from a 10 cm height at -15°C.