A domino green method for the rapid synthesis of novel fused isoquinoline derivatives via Knoevenagel/Michael/cyclization reactions in aqueous media and their photophysical properties

Nandigama Satish kumar,^a L. Chandrasekhara Rao,^a N. Jagadeesh Babu,^b H. M. Meshram^a,*

^aMedicinal Chemistry and pharmacology Division, ^bLaboratory of X-ray Crystallography,

CSIR - Indian Institute of Chemical Technology, Tarnaka, Hyderabad – 500007, India

General Remarks	S2
General Experimental	82
Crystal structure determination:	S3-S5
Compound Data	.88-816
Figure S1 – S36. Copies of ¹ H, ¹³ C spectra of all products	517-533

1.General Remarks

The reactions were carried out in 5 mL RB flask, fixed with reflux condenser and placed in the oilbath. Thin layer chromatography plates were visualized by the ultraviolet light and/or by exposure to iodine vapours and/or by exposure to methanolic acidic solution of *p*-anisaldehyde followed by heating (<1 min) on a hot plate (~250 °C). IR spectra were recorded on FT-IR spectrometer. ¹H and ¹³C NMR spectra were recorded in CDCl₃ and CF3COOH using 300, 400, 500 or 600 MHz NMR spectrometers. The chemical shifts (δ) were reported in parts per million (ppm) with respect to TMS as an internal standard. The coupling constants (*J*) are quoted in Hertz (Hz). Mass spectra were recorded on mass spectrometer by Electrospray ionization (ESI) technique.

2. General experimental procedure

A 5 ml RB flask containing 1-methyl isoquinoline (1) (1 mmol), malono nitrile (2) (1 mmol), aromatic aldehyde (3) (1 mmol) water (2 mL) was placed in oilbath and refluxed for the appropriate time, at 100 0 C (temperature monitored by a thermometer). The progress of reaction was monitored by TLC. After completion of the reaction, the flask was removed from the oil bath and cooled to room temperature. The solid was filtered and then washed with pet-ether (2X3ml). The product were dried.

3. ICP-OES analysis report of tap water and HPLC grade water:

Validation of the water used in the reaction was analyzed by **ICP-OES** method and the analysis report is shown below.

sample	Al	Ca	Cu	Fe	K	Mg	Na	Ni	Pb	Zn
	(mg/l)									
Тар	0.01	9.95	B.D	B.D	0.53	2.19	8.87	B.D	B.D	0.21
water										
HPLC	B.D	0.18	B.D	B.D	B.D	0.03	0.69	B.D	B.D	B.D
water										

Results:

B.D: Below Detection Limit

Crystal structure determination:

<u>Figure caption</u>: The molecular structure of 4i with the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level and H atoms are shown as small spheres of arbitrary radius. Only major component of the disordered trifluoromethyl fluorine atoms are shown for clarity. Dashed lines indicate N-H...O and O-H...O hydrogen bonds between the compound and solvent of crystallization.

<u>Crystal data for 4i</u>: The compound crystallized as a salt in the presence of strong acidic solvent trifluoroacetic acid. The asymmetric unit consists of a protonated form of compound as a cation, trifluoroacetic acetate as an anion, and a neutral trifluoroacetic acid, in 1:1:1 stoichiometric ratio with molecular formula C₂₀H₁₃BrN₃⁺.C₂F₃O₂⁻.C₂F₃ H₁O₂. M = 602.29, orange block, 0.32 x 0.24 x 0.11 mm³, monoclinic, space group $P2_1/n$ (No. 14), a = 11.8210(7), b = 15.0720(9), c = 14.4847(9) Å, $\beta = 109.6100(10)^\circ$, V = 2431.0(3) Å³, Z = 4, $D_c = 1.646$ g/cm³, $F_{000} = 1200$, CCD area detector, MoK α radiation, $\lambda = 0.71073$ Å, T = 293(2)K, $2\theta_{max} = 50.0^\circ$, 23026 reflections collected, 4277 unique (R_{int} = 0.0243), Final *GooF* = 1.020, *R1* = 0.0493, *wR2* = 0.1300, *R* indices based on 3110 reflections with I >2 σ (I) (refinement on F^2), 430 parameters, $\mu = 1.774$ mm⁻¹.

CCDC 1063210 contains the supplementary crystallographic data for this paper which can be obtained free of charge at <u>https://summary.ccdc.cam.ac.uk/structure-summary-form</u> or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0) 1223 336 033; email: <u>deposit@ccdc.cam.ac.uk</u>.

<u>Crystal structure determination</u>: X-ray data for the compound were collected at room temperature using a Bruker Smart Apex CCD diffractometer with graphite monochromated Mo-K α radiation (λ =0.71073Å) with ω -scan method.¹ Preliminary lattice parameters and orientation matrices were obtained from four sets of frames. Unit cell dimensions were determined using 6825 reflections for AW78 data. Integration and scaling of intensity data were accomplished using SAINT program.¹ The structures were solved by Direct Methods using SHELXS97² and refinement was carried out by full-matrix least-squares technique using SHELXL97.² Anisotropic displacement parameters were included for all non-hydrogen atoms. All H atoms were positioned geometrically and treated as riding on their parent C atoms, with C-H distances of 0.93--0.97 Å, and with U_{iso}(H) = 1.2U_{eq} (C) or 1.5U_{eq} for methyl atoms. H atoms bound to N

and O atoms were located in the difference Fourier map. Three fluorine atoms of trifluoromethyl groups were disordered over two sites. In the trifluoroacetate anion, two fluorine atoms have site occupancy factors (s.o.f) of 0.58 (F1/F2 atoms, major component) and 0.42 (F1D/F2D atoms, minor component) whereas the third fluorine atom has s.o.f. of 0.89 (F3, major component) and 0.11 (F3D, minor component). Similarly, in the neutral trifluoroacetic acid, two fluorine atoms have s.o.f. of 0.64 (F4/F6 atoms, major component) and 0.38 (F4D/F6D atoms, minor component) whereas the third fluorine atom has s.o.f of 0.82 (F5, major component) and 0.18 (F5D, minor component). One of oxygen atoms is disordered over two sites in trifluoroacetate anion (s.o.f of O1/O1D is 0.56/0.44) and also in trifluoroacetic acid (s.o.f of O3/O3D is 0.51/0.49). The anisotropic displacement parameters of the disordered fluorine atoms were restrained to be similar (SIMU instruction) and the direction of motion along the axis between these atoms was also restrained (DELU instruction).³ The C-F bond distances of trifluoromethyl groups were restrained to a set target value of 1.30Å with e.s.d. of 0.005Å.

- 1. SMART & SAINT. Software Reference manuals. Versions 6.28a & 5.625, Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, U.S.A., 2001.
- 2. Sheldrick, G. M. SHELXS97 and SHELXL97, Programs for crystal structure solution and refinement; University of Gottingen: Germany, 1997.
- Muller, P, Herbst-Imer, R, Spek, A. L, Schneider, T. R, and Sawaya, M. R. Crystal Structure Refinement: A Crystallographer's Guide to SHELXL. Muller, P. Ed. 2006 Oxford University Press: Oxford, New York, pp. 57–91.

Figure S1. ORTEP diagram of compound 4i·2CF₃COOH

Fig. 3 UV-Vis spectra of compounds 4a-4i, 4k and 4q in chloroform/trifluoroacetic acid solution $(1.0 \times 10^{-5} \text{ M})$.

Fig. 4 Fluorescence spectra of compounds 4a-4i, 4k and 4q in chloroform/trifluoroacetic acid solution (1.0×10^{-5} M).

Fig. 5 UV-Vis spectra of compounds 4c, 4e, 4q in chloroform only.

Fig. 6 Fluorescence spectra of compounds 4c, 4e, and 4q in chloroform.

Analytical data and ¹H and ¹³C NMR spectra of all compounds.

4-imino-2-phenyl-4H-pyridol2, 1-alisoquinoline-3-carbonitrile (4a): Pink solid. Yield 90%. Mp: 241-243 °C. IR (KBr) v_{max} (cm⁻¹) 3315, 3054, 2201, 1641, 1609, 1534, 1503, 1392, 1275, 1130, 1080, 944, 811, 745, 693, 587; ¹H-NMR (500 MHz, CDCl₃+CF₃COOD), δ (ppm) 7.66(m, 3H), 7.77(d, *J* = 6.56 Hz, 2H), 8.00(m, 5H), 8.33(s, 1H), 8.55(br s, 1H), 8.67(d, *J* = 8.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃+CF₃COOD), δ (ppm) 155.17, 152.44, 143.79, 135.58, 133.94, 132.39, 132.08, 131.06, 129.80, 128.72, 128.48, 125.75, 124.60, 123.20, 121.29, 118.02, 115.75, 113.48, 111.22, 110.40, 91.37; ESI-MS: m/z: 296 (M+H)⁺, HR-MS calcd for C₂₀H₁₄N₃: 296.1182 [M+H]⁺, found: 296.1163.

4-imino-2-p-tolyl-4H-pyridol2, 1-alisoquinoline-3-carbonitrile (4b): Pink solid. Yield 90%. Mp: 210-212 °C. IR (KBr) v_{max} (cm⁻¹) 3317, 2917, 2199, 1643, 1608, 1593, 1507, 1478, 1391, 1276, 1127, 1081, 940, 806, 743; ¹H-NMR (500 MHz, CDCl₃+CF₃COOD), δ (ppm) 2.52(s, 1H), 7.47(d, *J* = 7.9 Hz, 2H), 7.69(d, *J* = 8.0 Hz, 2H), 7.93-7.99(m, 3H), 8.03-8.09(m, 2H), 8.29(s, 1H), 8.58(d, *J* = 7.6 Hz, 1H), 8.64(d, *J* = 8.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃+CF₃COOD), δ (ppm) 154.86, 152.57, 143.36, 143.24, 135.14, 131.67, 131.19, 131.05, 130.51, 128.74, 128.51, 125.49, 124.56, 122.09, 115.80, 113.52, 111.25, 109.69, 91.55, 21.54; ESI-MS: m/z: 310 (M+H)⁺, HR-MS calcd for C₂₁H₁₆N₃: 310.1338 [M+H]⁺, found: 310.1321.

3) 4-imino-2-(4-methoxyphenyl)-4H-pyrido[2, 1-a]isoquinoline-3-carbonitrile (4c): Pink solid. Yield 95%. Mp: 269-271 °C. IR (KBr) $_{\nu max}$ (cm⁻¹) 3326, 3114, 2198, 1644, 1609, 1543, 1514, 1410, 1349, 1274, 1147, 1078, 937, 859, 798, 609, 523; ¹H-NMR (300 MHz, CDCl₃+CF₃COOD), δ (ppm) 3.95(s, 3H), 7.16(d, J = 8.8 Hz, 2H), 7.79-7.90(m, 4H), 7.95-8.09(m, 3H), 8.29(s, 1H), 8.49(d, J = 7.5 Hz, 1H), 8.65(d, J = 8.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃+CF₃COOD), δ (ppm) 163.05, 154.36, 152.55, 143,34, 135.22, 131.78, 130.96, 130.54, 128.71, 126.07, 125.56, 124.56, 122.60, 121.59, 117.98, 115.71, 115.41, 113.44, 109.66, 90.84, 55.73; ESI-MS: m/z: 326 (M+H)⁺, HR-MS calcd for C₂₁H₁₆N₃O: 326.1033 [M+H]⁺, found: 326.1019.

4) 4-imino-2-(4-nitrophenyl)-4H-pyrido[2, 1-a]isoquinoline-3-carbonitrile (4d): Yield 90%. Mp: 325-327 °C. IR (KBr) v_{max} (cm⁻¹) 3325, 3113, 2197, 1673, 1599, 1543, 1514, 1410, 1348, 1273, 1194, 1109, 1077, 1013, 935, 858, 761, 610, 525; ¹H-NMR (500 MHz, CDCl₃+CF₃COOD), δ (ppm) 6.69(d, J = 8.3 Hz, 3H), 6.78(m, 2H), 6.87(m, 2H), 7.10(d, J = 8.3 Hz, 2H), 7.34(br s, 1H), 7.44(d, J = 8.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃+CF₃COOD), δ (ppm) 152.52, 152.04, 149.61, 143.86, 140.02, 135.84, 132.15, 131.42, 129.86, 128.90, 125.71, 124.81, 124.53, 123.69, 122.18, 117.96, 115.70, 113.43, 111.16, 109.87, 91.69; ESI-MS: m/z: 341 (M+H)⁺, HR-MS calcd for C₂₀H₁₃N₄O₂: 341.1033 [M+H]⁺, found: 341.1019.

5) 2-(2-fluorophenyl)-4-imino-4H-pyrido[2, 1-a]isoquinoline-3-carbonitrile (4e): Pink solid. Yield 85%. Mp: 274-276 °C. IR (KBr) v_{max} (cm⁻¹) 3323, 3122, 2198, 1643, 1614, 1543, 1501, 1447, 1394, 1280, 1217, 1194, 1121, 1036, 940, 867, 808, 754, 679, 538; ¹H-NMR (500 MHz, CDCl₃+CF₃COOD), δ (ppm) 7.38(t, J = 9.0 Hz, 1H), 7.45(t, J = 7.6 Hz, 1H), 7.64-7.70(m, 2H), 7.97-8.03(m, 2H), 8.06-8.10(m, 2H), 8.34(s, 1H), 8.64(d, J = 8.3 Hz, 1H), 8.71(d, J = 6.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃+CF₃COOD), δ (ppm) 157.52, 152.30, 149.48, 143.26, 135.32, 134.18 (d, J = 8.2 Hz), 134.07, 131.80, 131.23, 130.46,

128.74, 125.64, 125.45 (d, J = 14.3 Hz), 124.56, 123.20, 122.46, 117.22, 116.94, 111.05, 93.31; ESI-MS: m/z: 314 (M+H)⁺, HR-MS calcd for C₂₀H₁₃FN₃: 314.1088 [M+H]⁺, found: 314.1088.

6) 2-(2-bromophenyl)-4-imino-4H-pyrido[2, 1-a]isoquinoline-3-carbonitrile (4f): Pink solid. Yield 85%. Mp: 248-250 °C. IR (KBr) v_{max} (cm⁻¹) 3312, 3135, 2195, 1642, 1607, 1540, 1503, 1479, 1332, 1280, 1196, 1122, 1077, 1024, 939, 873, 795, 761, 647, 590, 531; ¹H-NMR (500 MHz, CDCl₃+CF₃COOD), δ (ppm) 7.45-7.50(m, 2H), 7.54-7.57(m, 2H), 7.79(d, *J* = 7.9 Hz, 1H), 7.92(s, 1H), 8.02(s, 3H), 8.59(d, *J* = 8.0 Hz, 1H), 9.16(s, 1H); ¹³C NMR (125 MHz, CDCl₃+CF₃COOD), δ (ppm) 154.26, 151.98, 143.37, 135.49, 133.99, 132.70, 131.98, 131.22, 130.15, 128.76, 128.43, 125.74, 124.64, 123.47, 122.17, 121.15, 115.75, 113.48, 111.58, 93.83; ESI-MS: m/z: 374 (M+H)⁺ and (M+3)⁺, HR-MS calcd for C₂₀H₁₃BrN₃: 374.0287 [M+H]⁺, found: 374.0290.

7) 2-(4-fluorophenyl)-4-imino-4H-pyrido[2, 1-a]isoquinoline-3-carbonitrile (4g): Pink solid. Yield 90%. Mp: 259-261 °C. IR (KBr) v_{max} (cm⁻¹) 3317, 3124, 2202, 1607, 1533, 1502, 1477, 1454, 1412, 1377, 1336, 1279, 1217, 1063, 926, 842, 759, 690, 659, 598; ¹H-NMR (500 MHz, CDCl₃+CF₃COOD), δ (ppm) 7.37(t, J = 8.3 Hz, 2H), 7.79-7.82(m, 2H), 7.96-8.01(m, 3H), 8.05-8.11(m, 2H), 8.28(s, 1H), 8.60(d, J = 7.6 Hz, 1H), 8.66(d, J = 8.3 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃+CF₃COOD), δ (ppm) 153.73, 152.47, 143.59, 135.48, 131.93, 131.12, 130.94 (d, J = 8.80 Hz), 130.82, 130.10, 128.76, 125.63, 124.52, 123.06, 121.75, 117.33, 117.03 (d, J = 2.2 Hz), 116.71, 112.94, 109.94, 91.57; ESI-MS: m/z: 314 (M+H)⁺, HR-MS calcd for C₂₀H₁₃FN₃: 314.1088 [M+H]⁺, found: 314.1087.

8) 2-(4-chlorophenyl)-4-imino-4H-pyrido[2, 1-a]isoquinoline-3-carbonitrile (4h): Pink solid. Yield 85%. Mp: 269-271 °C. IR (KBr) v_{max} (cm⁻¹) 3321, 2923, 2198, 1723, 1641, 1611, 1540, 1496, 1390, 1276, 1248, 1127, 1089, 1043, 1011, 936, 874, 805, 741, 700, 646, 612, 490, 409; ¹H-NMR (500 MHz, CDCl₃+CF₃COOD), δ (ppm) 7.65(d, *J* = 8.246 Hz, 2H), 7.73(d, *J* = 8.3 Hz, 2H), 7.88(br s, 1H), 7.96(d, *J* = 7.17 Hz, 1H), 8.01(t, *J* = 7.3 Hz, 1H), 8.06(d, *J* = 7.4 Hz, 1H), 8.11(t, *J* = 7.3 Hz, 1H), 8.32(s, 1H), 8.53(d, *J* = 7.1 Hz, 1H), 8.68(d, *J* = 8.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃+CF₃COOD), δ (ppm) 153.64, 152.46, 143.78, 139.08, 135.64, 132.31, 132.09, 131.15, 130.14, 129.83, 128.76, 125.70, 124.53, 123.29, 121.54, 116.10, 113.27, 110.03, 91.29; ESI-MS: m/z: 330 (M+H)⁺, HR-MS calcd for C₂₀H₁₃CIN₃: 330.1163 [M+H]⁺, found: 330.1177.

2-(4-bromophenyl)-4-imino-4H-pyrido[2, 1-a]isoquinoline-3-carbonitrile (4i): Pink solid. Yidel 85%. Mp: 263-265 °C. IR (KBr) v_{max} (cm⁻¹) 3317, 2921, 2198, 1640, 1610, 1538, 1495, 1393, 1308, 1277, 1213, 1129, 1074, 1006, 938, 875, 806, 740, 682, 611, 518, 487; ¹H-NMR (500 MHz, CDCl₃+CF₃COOD), δ (ppm) 7.64(dd, *J* = 8.08, 21.97 Hz, 2H), 7.75(dd, *J* = 8.54, 18.76 Hz, 2H), 8.01(m, 5H), 8.30(s, 1H), 8.67(d, *J* = 8.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃+CF₃COOD), δ (ppm) 153.82, 152.45, 144.01, 135.75, 133.21, 132.72, 132.19, 131.99, 131.15, 129.94, 128.78, 127.52, 125.75, 124.55, 123.42, 121.39, 115.75, 113.48, 110.09, 91.12; ESI-MS: m/z: 374 (M+H)⁺ and 376 (M+3)⁺, HR-MS calcd for C₂₀H₁₃BrN₃: 374.0287 [M+H]⁺, found: 374.0299.

10) 4-imino-2-(napthalen-1-yl)-4H-pyrido[2, 1-a]isoquinoline-3-carbonitrile (4j): Pink solid. Yield 88%. Mp: 222-224 °C. IR (KBr) v_{max} (cm⁻¹) 3320, 3049, 2200, 1639, 1606, 1538, 1500, 1478, 1433, 1410, 1332, 1303, 1276, 1243, 1211, 1146, 1125, 1074, 1042, 929, 869, 828, 807, 771, 744, 656, 591, 547; ¹H-NMR (500 MHz, CDCl₃+CF₃COOD), δ (ppm) 7.54-7.59(m, 2H), 7.62-7.70(m, 4H), 7.99-8.06(m, 5H), 8.12(d, *J* = 7.9 Hz, 1H), 8.40(s, 1H), 8.55(d, *J* = 8.5 Hz, 1H), 8.65(d, *J* = 7.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃+CF₃COOD), δ (ppm) 155.01, 152.29, 143.21, 135.42, 133.83, 132.08, 131.92, 131.21, 129.83, 129.26, 128.77, 128.24, 127.77, 127.29, 125.71, 125.28, 124.56, 123.25, 122.07, 117.95, 115.68, 113.40, 112.07, 94.15; ESI-MS: m/z: 346 (M+H)⁺, HR-MS calcd for C₂₄H₁₆N₃: 346.13387 [M+H]⁺, found: 346.13377.

11) 2-(furan-2-yl)-4-imino-4H-pyrido[2, 1-a]isoquinoline-3-carbonitrile (4k): Pink solid. Yield 80%. Mp: 255-257 °C. IR (KBr) v_{max} (cm⁻¹) 3320, 3093, 2198, 1641, 1611, 1581, 1544, 1509, 1482, 1414, 1382, 1307, 1271, 1217, 1130, 1151, 1084, 1037, 962, 869, 809, 747, 676, 588, 409; ¹H-NMR (500 MHz, CDCl₃+CF₃COOD), δ (ppm) 6.83-6.84(m, 1H), 7.66(br s, 1H), 7.82(d, *J* = 7.6 Hz, 1H), 7.91(s, 1H), 7.94(d, *J* = 3.6 Hz, 1H), 7.98(t, *J* = 7.9 Hz, 2H), 8.05(t, *J* = 7.6 Hz, 1H), 8.37(d, *J* = 7.7 Hz, 1H), 8.68(s, 1H), 8.71(d, *J* = 8.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃+CF₃COOD), δ (ppm) 152.64, 148.65, 146.15, 143.74, 139.85, 135.24, 131.84, 130.87, 128.62, 125.64, 124.71, 122.36, 121.47, 119.72, 116.10, 114.71, 113.26, 105.04, 85.04; ESI-MS: m/z: 286 (M+H)⁺, HR-MS calcd for C₁₈H₁₂N₃O: 286.0974 [M+H]⁺, found: 286.0963.

12) 4-imino-2-(thiophen-2-yl)-4H-pyrido[2, 1-a]isoquinoline-3-carbonitrile (4l): Pink solid. Yield 85%. Mp: 230-232 °C. IR (KBr) v_{max} (cm⁻¹) 3310, 3062, 2202, 1641, 1615, 1548, 1500, 1431, 1341, 1341, 1304, 1276, 1126, 1073, 1048, 938, 857, 839, 804, 763, 745, 702, 649, 582, 524, 454; ¹H-NMR (300 MHz, CDCl₃+CF₃COOD), δ (ppm) 7.36-7.38(m, 1H), 7.85-7.88(m, 2H), 7.96-8.01(m, 2H), 8.04(t, *J* = 7.6 Hz, 1H), 8.20(d, *J* = 3.8 Hz, 1H), 8.33(s, 1H), 8.59-8.64(m, 2H); ¹³C NMR (125 MHz, CDCl₃+CF₃COOD), δ (ppm) 152.75, 145.94, 143.25, 135.33, 133.81, 132.79, 131.80, 131.00, 130.11, 128.70, 125.47, 124.41, 122.46, 121.85, 113.97, 113.59, 108.26, 88.49; ESI-MS: m/z: 302 (M+H)⁺, HR-MS calcd for C₁₈H₁₂N₃S: 302.0746 [M+H]⁺, found: 302.0746.

13) 2-(6-bromobenzo[d][1,3]dioxol-5-yl)-4-imino-4H-pyrido[2,1-a]isoquinoline-3-carbonitrile (4m): Pink solid. Yield 90%. Mp: 234-236 °C. IR (KBr) v_{max} (cm⁻¹) 3309, 2913, 2207, 1608, 1545, 1500, 1479, 1407, 1278, 1234, 1120, 1075, 1032, 995, 932, 866, 803, 759, 647, 566; ¹H-NMR (500 MHz, CDCl₃+CF₃COOD), δ (ppm) 6.15(s, 2H), 6.93(s, 1H), 7.24(s, 1H), 7.96-8.10(m, 5H), 8.25(s, 1H), 8.60(d, *J* = 8.5 Hz, 1H), 8.71(d, *J* = 7.6 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃+CF₃COOD), δ (ppm) 154.24, 151.97, 150.93, 148.36, 143.27, 135.42, 131.96, 131.17, 128.69, 127.85, 125.76, 124.65, 123.28, 122.18, 116.86, 113.83, 112.99, 111.91, 109.64, 103.01, 94.08; ESI-MS: m/z: 418 (M+H)⁺, HR-MS calcd for C₂₁H₁₃BrN₃O₂: 418.1364 [M+H]⁺, found: 418.1352.

14) 2-(1,3-diphenyl-1H-pyrazol-4-yl)-4-imino-4H-pyrido[2, 1-a]isoquinoline-3-carbonitrile (4n): Pink solid. Yield 90%. Mp: 199-201 °C. IR (KBr) _{νmax} (cm⁻¹) 3322, 3054, 2196, 1640, 1606, 1542, 1497, 1413, 1352, 1303, 1274, 1222, 1152, 1128, 1069, 957, 919, 876, 803, 753, 691, 652, 556, 506; ¹H-NMR (500 MHz, CDCl₃+CF₃COOD), δ (ppm) 6.65(s, 1H), 7.05(d, *J* = 7.7 Hz, 1H), 7.35-7.40(m, 5H), 7.47-7.52(m, 4H), 7.59-7.68(m, 4H), 7.82(d, *J* = 7.7 Hz, 2H), 8.57(s, 1H), 9.07(d, *J* = 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃+CF₃COOD), δ (ppm) 156.01, 152.02, 144.27, 142.73, 139.34, 132.44, 132.03, 129.54, 128.79, 128.63, 127.34, 127.15, 125.41, 124.45, 124.19, 119.58, 118.22, 117.39, 114.69, 98.84, 91.19; ESI-MS: m/z: 438 (M+H)⁺, HR-MS calcd for C₂₉H₂₀N₅: 438.1713 [M+H]⁺, found: 438.1701.

15) 4-imino-2-(1-phenyl-3-p-tolyl-1H-pyrazol-4-yl)-4H-pyrido[2, 1-a]isoquinoline-3-carbonitrile (40): Pink solid. Yield 90%. Mp: 212-214 °C. IR (KBr) v_{max} (cm⁻¹) 3323, 2199, 1638, 1608, 1565, 1545, 1498, 1416, 1275, 1246, 1198, 1130, 1078, 959, 920, 876, 833, 800, 751, 688, 652, 503; ¹H-NMR (400 MHz, CDCl₃+CF₃COOD), δ (ppm) 2.36(s, 3H), 6.65(s, 1H), 7.02(d, *J* = 7.8 Hz, 1H), 7.19(d, *J* = 7.9 Hz, 2H), 7.32-7.41(m, 2H), 7.47-7.62(m, 8H), 7.80(d, *J* = 7.7 Hz, 2H), 8.54(s, 1H), 9.04(d, *J* = 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃+CF₃COOD), δ (ppm) 155.99, 151.98, 144.33, 142.61, 139.31, 138.42, 131.91, 129.45, 129.24, 128.58, 128.43, 127.16, 127.06, 125.39, 124.45, 124.11, 119.44, 118.26, 117.27, 114.44, 98.61,

91.17, 21.24; ESI-MS: m/z: 452 (M+H)⁺, HR-MS calcd for $C_{30}H_{21}N_5$: 452.1869 [M+H]⁺, found: 452.1863.

16) 2-(3-(4-fluorophenyl)-1-phenyl-1H-pyrazol-4-yl)-4-imino-4H-pyrido[2, 1-a]isoquinoline-3-carbonitrile (4p): pink solid. Yield 95%. Mp: 261-263 °C. IR (KBr) v_{max} (cm⁻¹) 3317, 3051, 2203, 1601, 1574, 1502, 1477, 1453, 1412, 1380, 1299, 1280, 1214, 1152, 1122, 1059, 958, 877, 842, 768, 750, 688, 658, 599, 526; ¹H-NMR (500 MHz, CDCl₃+CF₃COOD), δ (ppm) 7.17-7.21(m, 2H), 7.48(t, *J* = 7.4 Hz, 1H), 7.55-7.62(m, 4H), 7.70(d, *J* = 8.3 Hz, 1H), 7.72-7.80(m, 3H), 7.84(d, *J* = 7.6 Hz, 1H), 7.91(s, 1H), 7.95-8.00(m, 3H), 8.53(d, *J* = 7.7 Hz, 1H), 8.75(s, 1H); ¹³C NMR (75 MHz, CDCl₃+CF₃COOD), δ (ppm) 152.56, 152.10, 145.33, 142.88, 138.23, 135.21, 131.78, 131.07, 130.96, 130.69, 130.01, 129.13, 128.63, 126.53, 124.76, 124.33, 122.58, 121.63, 120.71, 116.76, 116.47, 115.16, 112.83, 109.72, 90.23; ESI-MS: m/z: 456 (M+H)⁺, HR-MS calcd for C₂₉H₁₉FN₅: 456.1619 [M+H]⁺, found: 456.1609.

17) 4-imino-2-(1-phenyl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)-4H-pyrido[2, 1-a]isoquinoline-3-carbonitrile (4q): Pink solid. Yield 85%. Mp: 182-184 °C. IR (KBr) v_{max} (cm⁻¹) 3316, 3067, 2197, 1608, 1555, 1498, 1408, 1358, 1302, 1273, 1248, 1216, 1125, 1073, 957, 908, 850, 802, 748, 688, 653, 550; ¹H-NMR (300 MHz, CDCl₃+CF₃COOD), δ (ppm) 7.14(t, J = 5.0 Hz, 1H), 7.29(d, J = 3.5 Hz, 1H), 7.46(t, J = 7.0 Hz, 1H), 7.52-7.57(m, 3H), 7.79-7.82(m, 3H), 7.86(d, J = 7.6 Hz, 1H), 7.90(d, J = 8.3 Hz, 1H), 7.96-8.00(m, 2H), 8.16(s, 1H), 8.65(d, J = 7.7 Hz, 1H), 8.73(s, 1H); ¹³C NMR (75 MHz, CDCl₃+CF₃COOD), δ (ppm) 155.96,

145.73, 144.00, 142.93, 139.12, 133.95, 132.08, 129.51, 128.86, 128.51, 127.47, 127.34, 127.16, 126.47, 125.44, 124.62, 124.21, 119.46, 117.95, 117.39, 114.69, 98.34, 92.18; ESI-MS: m/z: 444 (M+H)⁺, HR-MS calcd for $C_{27}H_{18}N_5S$: 444.12774 [M+H]⁺, found: 444.12703.

Figure S1: ¹H NMR of compound 4a

Figure S2: ¹³C NMR of compound 4a

Figure S3: ¹H NMR of compound 4b

Figure S4: ¹³C NMR of compound 4b

Figure S5: ¹H NMR of compound 4c

Figure S6: ¹³C NMR of compound 4c

Figure S7: ¹H NMR of compound 4d

Figure S8: ¹³C NMR of compound 4d

Figure S9: ¹H NMR of compound 4e

Figure S10: ¹³C NMR of compound 4e

Figure S11: ¹H NMR of compound 4f

Figure S12: ¹³C NMR of compound 4f

Figure S13: ¹H NMR of compound 4g

Figure S14: ¹³C NMR of compound 4g

Figure S15: ¹H NMR of compound 4h

Figure S16: ¹³C NMR of compound 4h

Figure S17: ¹H NMR of compound 4i

Figure S18: ¹³C NMR of compound 4i

Figure S19: ¹H NMR of compound 4j

Figure S20: ¹³C NMR of compound 4j

Figure S21: ¹H NMR of compound 4k

Figure S22: ¹³C NMR of compound 4k

Figure S23: ¹H NMR of compound 41

Figure S24: ¹³C NMR of compound 41

Figure S25: ¹H NMR of compound 4m

Figure S26: ¹³C NMR of compound 4m

Figure S27: ¹H NMR of compound 4n

Figure S28: ¹³C NMR of compound 4n

Figure S29: ¹H NMR of compound 40

Figure S30: ¹³C NMR of compound 40

Figure S31: ¹H NMR of compound 4p

Figure S32: ¹³C NMR of compound 4p

Figure S33: ¹H NMR of compound 4q

Figure S34: ¹³C NMR of compound 4q

