Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Penchinones A–D, two pairs of cis-trans isomers with rearranged

neolignane carbon skeletons from Penthorum chinense

Ya-Cong He,^{ab} Cheng Peng,^{*ab} Xiao-Fang Xie,^{ab} Ming-Hua Chen,^c Xiao-Nian Li,^d Meng-Ting Li,^{ab} Qin-

Mei Zhou,^{ab} Li Guo^{ab} and Liang Xiong^{*ab}

^a State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. E-mail: pengchengchengdu@126.com (C. Peng); E-mail: xiling0505@126.com (L. Xiong)

^b School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

^c Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China

^d State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

Supplementary Information

The List of Contents

No.	Content	Page
1	Figure S1. The ¹ H NMR Spectrum of Compound 1 in CD ₃ OD (600 MHz)	S1
2	Figure S2. The ¹³ C NMR Spectrum of Compound 1 in CD ₃ OD (150 MHz)	S1
3	Figure S3. The DEPT Spectrum of Compound 1 in CD ₃ OD	S2
4	Figure S4. The HSQC Spectrum of Compound 1 in CD ₃ OD	S2
5	Figure S5. The ¹ H- ¹ H gCOSY Spectrum of Compound 1 in CD ₃ OD	S 3
6	Figure S6. The HMBC Spectrum of Compound 1 in CD ₃ OD	S 3
7	Figure S7. The IR Spectrum of Compound 1	S4
8	Figure S8. The (+)-HRESIMS Spectroscopic Data of Compound 1	S4
9	Figure S9. The ¹ H NMR Spectrum of Compound 2 in CD ₃ OD (600 MHz)	S5
10	Figure S10. The ¹³ C NMR Spectrum of Compound 2 in CD ₃ OD (150 MHz)	S5
11	Figure S11. The DEPT Spectrum of Compound 2 in CD ₃ OD	S6
12	Figure S12. The HSQC Spectrum of Compound 2 in CD ₃ OD	S 6
13	Figure S13. The ¹ H- ¹ H gCOSY Spectrum of Compound 2 in CD ₃ OD	S 7
14	Figure S14. The HMBC Spectrum of Compound $\frac{1}{2}$ in CD ₃ OD	S 7
15	Figure S15. The IR Spectrum of Compound 2	S 8
16	Figure S16. The (+)-HRESIMS Spectroscopic Data of Compound 2	S 8
17	Figure S17. The ¹ H NMR Spectrum of Compound 3 in CD ₃ OD (600 MHz)	S 9
18	Figure S18. The ¹³ C NMR Spectrum of Compound 3 in CD ₃ OD (150 MHz)	S 9
19	Figure S19. The DEPT Spectrum of Compound 3 in CD_2OD	S10
20	Figure S20. The HSOC Spectrum of Compound 3 in CD_3OD	S10
21	Figure S20. The ¹ H- ¹ H gCOSY Spectrum of Compound 3 in CD ₂ OD	S11
22	Figure S22. The HMBC Spectrum of Compound 3 in CD ₂ OD	S11
23	Figure S23. The IR Spectrum of Compound 3	S12
24	Figure S26. The (-)-HRESIMS Spectroscopic Data of Compound 3	S12
25	Figure S24. The () HILDSING Spectroscopic Data of Compound 5 Figure S25. The ¹ H NMR Spectrum of Compound 4 in CD ₂ OD (600 MHz)	S12
26	Figure S26. The ¹³ C NMR Spectrum of Compound 4 in CD ₃ OD (000 MHZ)	S13
20	Figure S20. The HSOC Spectrum of Compound 4 in CD30D (150 WHZ)	S13
28	Figure S28. The HMBC Spectrum of Compound 4 in CD,OD	S14
20	Figure S20. The () HDESIMS Spectroscopic Data of Compound 4	S14
20	Figure 529. The (-)-IIKESINIS Spectroscopic Data of Compound 4 Table S1. Atomic Coordinates (\times 10 ⁴) and Equivalent Isotronic Displacement Decompoters ($Å^2 \times 10^3$) for	S15 S15
30	Compound 2	515
21	Compound 2 Table S2 Anigetrenic Dignlessment Decomptors for Compound 2	S16
22	Table S2. Anisotropic Displacement Parameters for Compound 2 Table S2. Dond Longths for Compound 2	S10 S17
32 22	Table 54. Dond Angles for Compound 2	S1/ S19
23 24	Table 54. Bond Angles for Compound 2 Table 55. Hudrogen Coordinates (y. 104) and Lestronic Displacement Decomposition $(\overset{1}{\lambda}^{2} \times 10^{3})$ for	518
34	Table S5. Hydrogen Coordinates (\times 10 ⁴) and isotropic Displacement Parameters ($A^2 \times 10^4$) for Compound 2	519
25	Compound 2 Table S6 Hydrogan Dands far Compound 2	\$20
26	Table S7. Torsion Angles for Compound 2	S20
27	Figure S20. Crystal Call Diagram for Compound 2	S20 S21
20	Figure S50. Crystal Cell Diagram for Compound 2 ECD coloulation datails for 3	S21 S22
20	EUD calculation utility for J Figure S21. The pair of eventioners $[(S) \ 2 \text{ and } (D) \ 2]$ in the ECD calculation	522
39 40	Figure S31. The part of enantholiners $[(S)$ -3 and (K) -3] in the ECD calculation Figure S22 D2LVD/6 21+C (d, n) optimized four lowest energy 2D conformers of (0) 2 and their	522 522
40	Figure 552. DSL 11/0-51+O (u, p) optimized four lowest energy SD conformers of (S)-S and their relative Gibbs free energies ($AG < 2$ K csl/mol)	525
41	Table S9. Energy Analysis of Conformation of (0) 3	522
41	LADIC SO. ENERGY ANALYSIS OF COMORNERS OF (S)-S	525 522
42	KEFEKENUES	525

Figure S2. The ¹³C NMR Spectrum of Compound 1 in CD₃OD (150 MHz)

Bruker AVIIIHD 600 20140627 HYC-13 HSQC CD30D

Figure S4. The HSQC Spectrum of Compound 1 in CD_3OD

Figure S5. The $^{1}H^{-1}H$ gCOSY Spectrum of Compound 1 in CD₃OD

Figure S6. The HMBC Spectrum of Compound 1 in CD₃OD

Figure S7. The IR Spectrum of Compound 1

Figure S8. The (+)-HRESIMS Spectroscopic Data of Compound 1

Figure S10. The ¹³C NMR Spectrum of Compound 2 in CD₃OD (150 MHz)

Figure S12. The HSQC Spectrum of Compound 2 in CD₃OD

Figure S13. The ¹H-¹H gCOSY Spectrum of Compound 2 in CD₃OD

Figure S14. The HMBC Spectrum of Compound 2 in CD₃OD

Figure S15. The IR Spectrum of Compound 2

Figure S16. The (+)-HRESIMS Spectroscopic Data of Compound 2

Figure S17. The ¹H NMR Spectrum of Compound **3** in CD₃OD (600 MHz)

Figure S18. The ¹³C NMR Spectrum of Compound 3 in CD₃OD (150 MHz)

Figure S20. The HSQC Spectrum of Compound 3 in CD₃OD

Figure S21. The ¹H-¹H gCOSY Spectrum of Compound 3 in CD₃OD

Figure S22. The HMBC Spectrum of Compound 3 in CD₃OD

Figure S23. The IR Spectrum of Compound 3

Figure S24. The (–)-HRESIMS Spectroscopic Data of Compound 3

Figure S26. The ¹³C NMR Spectrum of Compound 4 in CD₃OD (150 MHz)

Figure S27. The HSQC Spectrum of Compound 4 in CD₃OD

Figure S28. The HMBC Spectrum of Compound 4 in CD₃OD

Figure S29. The (-)-HRESIMS Spectroscopic Data of Compound 4

Table S1. Atomic Coordinates (× 10⁴) and Equivalent Isotropic Displacement Parameters (Å² × 10³) for Compound 2

	X	У	Z	U(eq)
O(3)	7095(1)	-972(1)	4971(1)	22(1)
O(1S)	3697(1)	1244(1)	6695(1)	18(1)
O(4)	7859(1)	-187(1)	3849(1)	22(1)
O(2)	7460(1)	-432(1)	6271(1)	22(1)
O(7)	8323(1)	603(1)	7025(1)	19(1)
O(6')	12409(1)	2476(1)	6799(1)	23(1)
O(8)	6313(1)	1629(1)	6425(1)	21(1)
C(10)	5658(2)	-997(1)	5049(1)	28(1)
C(3)	7628(1)	-311(1)	5068(1)	17(1)
C(2)	7836(1)	-36(1)	5727(1)	16(1)
C(1)	8407(1)	639(1)	5807(1)	16(1)
C(7)	8550(1)	943(1)	6490(1)	16(1)
C(4')	9103(1)	1677(1)	6556(1)	15(1)
C(3')	8299(1)	2282(1)	6517(1)	16(1)
C(2')	8916(1)	2939(1)	6582(1)	16(1)
C(1')	10293(1)	3010(1)	6683(1)	16(1)
C(7')	10963(1)	3702(1)	6728(1)	18(1)
C(8')	10599(1)	4248(1)	7111(1)	20(1)
C(9')	9483(1)	4293(1)	7625(1)	23(1)
C(4)	8036(1)	70(1)	4492(1)	18(1)
C(6)	8814(1)	1006(1)	5212(1)	18(1)
C(5)	8650(1)	726(1)	4566(1)	20(1)
C(5')	10475(1)	1736(1)	6655(1)	18(1)
C(6')	11074(1)	2397(1)	6710(1)	17(1)
C(8)	6828(1)	2213(1)	6429(1)	18(1)
C(9)	5990(1)	2865(1)	6355(1)	29(1)

	U11	U22	U33	U23	U13	U12
O(3)	27(1)	13(1)	25(1)	-2(1)	-1(1)	-5(1)
O(1S)	15(1)	19(1)	20(1)	2(1)	0(1)	-2(1)
O(4)	26(1)	20(1)	18(1)	-3(1)	0(1)	-7(1)
O(2)	34(1)	15(1)	18(1)	1(1)	-1(1)	-7(1)
O(7)	25(1)	14(1)	19(1)	1(1)	-1(1)	-2(1)
O(6')	14(1)	16(1)	38(1)	-2(1)	-3(1)	0(1)
O(8)	16(1)	16(1)	31(1)	-2(1)	1(1)	-2(1)
C(10)	29(1)	28(1)	28(1)	-2(1)	0(1)	-14(1)
C(3)	16(1)	12(1)	23(1)	-1(1)	-1(1)	0(1)
C(2)	16(1)	13(1)	21(1)	3(1)	0(1)	1(1)
C(1)	14(1)	13(1)	21(1)	0(1)	-1(1)	1(1)
C(7)	12(1)	13(1)	21(1)	1(1)	0(1)	2(1)
C(4')	18(1)	14(1)	13(1)	0(1)	0(1)	-1(1)
C(3')	17(1)	14(1)	16(1)	0(1)	0(1)	1(1)
C(2')	18(1)	13(1)	19(1)	0(1)	0(1)	2(1)
C(1')	19(1)	14(1)	16(1)	-1(1)	1(1)	-1(1)
C(7')	17(1)	16(1)	22(1)	1(1)	0(1)	-2(1)
C(8')	20(1)	14(1)	24(1)	0(1)	-3(1)	-3(1)
C(9')	23(1)	20(1)	24(1)	-4(1)	-1(1)	1(1)
C(4)	16(1)	18(1)	19(1)	-2(1)	-1(1)	2(1)
C(6)	18(1)	14(1)	23(1)	0(1)	1(1)	-3(1)
C(5)	23(1)	19(1)	19(1)	2(1)	1(1)	-4(1)
C(5')	17(1)	13(1)	22(1)	0(1)	0(1)	3(1)
C(6')	15(1)	18(1)	18(1)	-1(1)	-1(1)	-1(1)
C(8)	18(1)	16(1)	19(1)	-1(1)	1(1)	0(1)
C(9)	16(1)	19(1)	52(1)	0(1)	-3(1)	2(1)

Table S2. Anisotropic Displacement Parameters for Compound 2

Table S3. Bond Lengths for Compound 2

Bond	Length
O(3)-C(3)	1.3791(15)
O(3)-C(10)	1.4389(18)
O(1S)-H(1SB)	0.821(9)
O(1S)-H(1SA)	0.823(9)
O(4)-C(4)	1.3477(16)
O(4)-H(4)	0.8400
O(2)-C(2)	1.3475(16)
O(2)-H(2)	0.8400
O(7)-C(7)	1.2432(16)
O(6')-C(6')	1.3471(16)
O(6')-H(6')	0.8400
O(8)-C(8)	1.2238(16)
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800
C(10)-H(10C)	0.9800
C(3)-C(4)	1.3908(19)
C(3)-C(2)	1.3939(18)
C(2)-C(1)	1.4133(17)
C(1)-C(6)	1.4065(18)
C(1)-C(7)	1.4493(18)
C(7)-C(4')	1.5062(17)
C(4')-C(5')	1.3828(18)
C(4')-C(3')	1.4053(17)
C(3')-C(2')	1.3972(17)
C(3')-C(8)	1.4789(18)
C(2')-C(1')	1.3904(18)
C(2')-H(2')	0.9500
C(1')-C(6')	1.4039(18)
C(1')-C(7')	1.4773(17)
C(7')-C(8')	1.3272(19)
C(7')-H(7')	0.9500
C(8')-C(9')	1.4950(19)
C(8')-H(8')	0.9500
C(9')-H(9'1)	0.9800
C(9')-H(9'2)	0.9800
C(9')-H(9'3)	0.9800
C(4)-C(5)	1.3987(18)
C(6)-C(5)	1.3689(19)
C(6)-H(6)	0.9500
C(5)-H(5)	0.9500
C(5')-C(6')	1.3961(18)
C(5')-H(5')	0.9500
C(8)-C(9)	1.5011(18)
C(9)-H(9A)	0.9800
C(9)-H(9B)	0.9800
_C(9)-H(9C)	0.9800

Table S4. Bond Angles for Compound 2

Bond	Angle
C(3)-O(3)-C(10)	113.42(10)
H(1SB)-O(1S)-H(1SA)	105.7(14)
C(4)-O(4)-H(4)	109.5
C(2)-O(2)-H(2)	109.5
C(6')-O(6')-H(6')	109.5
O(3)-C(10)-H(10A)	109.5
O(3)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
O(3)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
O(3)-C(3)-C(4)	118.49(11)
O(3)-C(3)-C(2)	121.62(11)
C(4)-C(3)-C(2)	119.78(12)
O(2)-C(2)-C(3)	117.68(11)
O(2)-C(2)-C(1)	122.28(12)
C(3)-C(2)-C(1)	120.03(12)
C(6)-C(1)-C(2)	118.47(12)
C(6)-C(1)-C(7)	121.41(11)
C(2)-C(1)-C(7)	120.12(11)
O(7)-C(7)-C(1)	122.42(11)
O(7)-C(7)-C(4')	118.52(11)
C(1)-C(7)-C(4')	118.87(11)
C(5')-C(4')-C(3')	120.17(12)
C(5')-C(4')-C(7)	116.59(11)
C(3')-C(4')-C(7)	123.23(11)
C(2')-C(3')-C(4')	118.54(11)
C(2')-C(3')-C(8)	121.66(11)
C(4')-C(3')-C(8)	119.78(11)
C(1')-C(2')-C(3')	122.23(12)
C(1')-C(2')-H(2')	118.9
C(3')-C(2')-H(2')	118.9
C(2')-C(1')-C(6')	118.03(11)
C(2')-C(1')-C(7')	122.69(12)
C(6')-C(1')-C(7')	119.21(11)
C(8')-C(7')-C(1')	127.40(12)
C(8')-C(7')-H(7')	116.3
C(1')-C(7')-H(7')	116.3
C(7')-C(8')-C(9')	128.28(12)
C(7')-C(8')-H(8')	115.9
C(9')-C(8')-H(8')	115.9
C(8')-C(9')-H(9'1)	109.5
C(8')-C(9')-H(9'2)	109.5
H(9'1)-C(9')-H(9'2)	109.5
C(8')-C(9')-H(9'3)	109.5
H(9'1)-C(9')-H(9'3)	109.5
H(9'2)-C(9')-H(9'3)	109.5
O(4)-C(4)-C(3)	121.00(12)
O(4)-C(4)-C(5)	118.37(12)
C(3)-C(4)-C(5)	120.63(12)

C(5)-C(6)-C(1)	121.46(12)
C(5)-C(6)-H(6)	119.3
C(1)-C(6)-H(6)	119.3
C(6)-C(5)-C(4)	119.54(12)
C(6)-C(5)-H(5)	120.2
C(4)-C(5)-H(5)	120.2
C(4')-C(5')-C(6')	120.41(12)
C(4')-C(5')-H(5')	119.8
C(6')-C(5')-H(5')	119.8
O(6')-C(6')-C(5')	122.16(12)
O(6')-C(6')-C(1')	117.24(11)
C(5')-C(6')-C(1')	120.59(12)
O(8)-C(8)-C(3')	119.75(12)
O(8)-C(8)-C(9)	121.06(12)
C(3')-C(8)-C(9)	119.18(11)
C(8)-C(9)-H(9A)	109.5
C(8)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(8)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5

Table S5. Hydrogen Coordinates (× 10⁴) and Isotropic Displacement Parameters (Å² × 10³) for Compound 2

	X	У	Ζ	U(eq)
H(1SB)	4485(10)	1349(9)	6624(8)	27
H(1SA)	3686(17)	1054(8)	7077(6)	27
H(4)	7404	-558	3869	32
H(2)	7638	-218	6639	33
H(6')	12790	2085	6755	34
H(10A)	5412	-830	5511	43
H(10B)	5345	-1481	4989	43
H(10C)	5237	-695	4700	43
H(2')	8377	3350	6555	20
H(7')	11742	3762	6451	22
H(8')	11115	4664	7050	23
H(9'1)	9003	3843	7641	34
H(9'2)	8859	4667	7490	34
H(9'3)	9854	4397	8083	34
H(6)	9213	1457	5260	22
H(5)	8951	977	4171	25
H(5')	11012	1324	6686	21
H(9A)	6306	3138	5958	43
H(9B)	6067	3149	6775	43
H(9C)	5048	2733	6284	43

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1S)-H(1SB)O(8)	0.821(9)	1.934(9)	2.7539(13)	177.2(17)
O(1S)-H(1SA)O(7)#1	0.823(9)	1.973(9)	2.7877(13)	170.2(16)
O(4)-H(4)O(1S)#2	0.84	2.02	2.7490(13)	144.2
O(4)-H(4)O(3)	0.84	2.30	2.7441(13)	113.7
O(2)-H(2)O(7)	0.84	1.86	2.5984(13)	145.6
O(6')-H(6')O(1S)#3	0.84	1.84	2.6794(13)	176.8

 Table S6. Hydrogen Bonds for Compound 2

Table S7. Torsion Angles for Compound 2

	Torsion Angle
C(10)-O(3)-C(3)-C(4)	-104.45(14)
C(10)-O(3)-C(3)-C(2)	79.30(15)
O(3)-C(3)-C(2)-O(2)	-1.92(18)
C(4)-C(3)-C(2)-O(2)	-178.11(12)
O(3)-C(3)-C(2)-C(1)	178.85(11)
C(4)-C(3)-C(2)-C(1)	2.65(19)
O(2)-C(2)-C(1)-C(6)	177.74(12)
C(3)-C(2)-C(1)-C(6)	-3.06(18)
O(2)-C(2)-C(1)-C(7)	-2.82(18)
C(3)-C(2)-C(1)-C(7)	176.38(12)
C(6)-C(1)-C(7)-O(7)	-172.67(12)
C(2)-C(1)-C(7)-O(7)	7.91(19)
C(6)-C(1)-C(7)-C(4')	2.25(18)
C(2)-C(1)-C(7)-C(4')	-177.18(11)
O(7)-C(7)-C(4')-C(5')	82.13(15)
C(1)-C(7)-C(4')-C(5')	-92.98(14)
O(7)-C(7)-C(4')-C(3')	-98.19(15)
C(1)-C(7)-C(4')-C(3')	86.70(15)
C(5')-C(4')-C(3')-C(2')	0.02(18)
C(7)-C(4')-C(3')-C(2')	-179.65(11)
C(5')-C(4')-C(3')-C(8)	-178.45(12)
C(7)-C(4')-C(3')-C(8)	1.88(18)
C(4')-C(3')-C(2')-C(1')	-0.13(19)
C(8)-C(3')-C(2')-C(1')	178.31(12)
C(3')-C(2')-C(1')-C(6')	0.90(19)
C(3')-C(2')-C(1')-C(7')	177.87(12)
C(2')-C(1')-C(7')-C(8')	48.7(2)
C(6')-C(1')-C(7')-C(8')	-134.32(15)
C(1')-C(7')-C(8')-C(9')	4.3(2)
O(3)-C(3)-C(4)-O(4)	3.07(19)
C(2)-C(3)-C(4)-O(4)	179.38(12)
O(3)-C(3)-C(4)-C(5)	-176.47(11)
C(2)-C(3)-C(4)-C(5)	-0.15(19)
C(2)-C(1)-C(6)-C(5)	0.99(19)
C(7)-C(1)-C(6)-C(5)	-178.44(12)
C(1)-C(6)-C(5)-C(4)	1.5(2)

O(4)-C(4)-C(5)-C(6) 178.54(12)	
C(3)-C(4)-C(5)-C(6) -1.9(2)	
C(3')-C(4')-C(5')-C(6') -0.71(19)	
C(7)-C(4')-C(5')-C(6') 178.98(11)	
C(4')-C(5')-C(6')-O(6') -179.16(12)	
C(4')-C(5')-C(6')-C(1') 1.51(19)	
C(2')-C(1')-C(6')-O(6') 179.05(11)	
C(7')-C(1')-C(6')-O(6') 1.97(18)	
C(2')-C(1')-C(6')-C(5') -1.58(18)	
C(7')-C(1')-C(6')-C(5') -178.66(11)	
C(2')-C(3')-C(8)-O(8) -174.68(12)	
C(4')-C(3')-C(8)-O(8) 3.74(18)	
C(2')-C(3')-C(8)-C(9) 4.46(19)	
C(4')-C(3')-C(8)-C(9) -177.12(12)	

_

Figure S30. Crystal Cell Diagram for Compound 2

ECD calculation details for 3

The calculations were performed on the enantiomers (*S*)-**3** and (*R*)-**3** (Figure S31). Conformational analysis was carried out via Monte Carlo searching with the MMFF94 molecular mechanics force field using the Spartan 10 software.²⁹

Conformational analyses of (*S*)-**3** showed 4 lowest energy conformers (**3**C1–**3**C4) (Figure S32) having relative energy within 2 kcal/mol (Table S8). Subsequently, the conformers were reoptimized using DFT at the B3LYP/6-31+G (d, p) level in vacuum with the Gaussian 09 program.³⁰ The B3LYP/6-31G+(d, p) harmonic vibrational frequencies were further calculated to confirm their stability. The energies, oscillator strengths, and rotational strengths of the first 40 electronic excitations were calculated using the TDDFT methodology at the B3LYP/6-311++G (2d, 2p) level in vacuum. The ECD spectra were simulated by the Gausssum 2.25 program³¹ (σ = 0.3 eV). To get the final spectra of (*S*)-**3**, the simulated spectra of the 4 lowest energy conformations were averaged according to the Boltzmann distribution theory and their relative Gibbs free energy (Δ G). The corresponding theoretical ECD spectrum of (*R*)-**3** was depicted by inverting that of (*S*)-**3**.

All quantum computations were performed using Gaussian 09 program package, on an IBM cluster machine located at the High Performance Computing Center of Peking Union Medical College. In the region of 200-400 nm, the theoretically calculated ECD spectra of (R)-**3** were in agreement with the experimental ECD spectra of **3**. This allowed the assignment of 7R configuration for **3**.

Figure S31. The pair of enantiomers [(S)-3 and (R)-3] in the ECD calculation.

3C1 (0.000 Kcal/mol) 3C2 (0.003 Kcal/mol) 3C3 (0.077 Kcal/mol) 3C4 (0.393 Kcal/mol)

Figure S32. B3LYP/6-31+G (d, p) optimized four lowest energy 3D conformers of (*S*)-**3** and their relative Gibbs free energies ($\Delta G < 2$ Kcal/mol).

	MMFF energy		B3LYP/6-31+G (d, p) Gibbs free energy (298.15 K)		
Conf	ΔΕ	Boltzmann	G	ΔG	Boltzmann
Coni.	(Kcal/mol)	Distribution	(Hartree)	(Kcal/mol)	Distribution
3 C1	0.00	0.351	-1110.743868	0.000	0.295
3C2	0.23	0.239	-1110.743864	0.003	0.294
3C3	0.23	0.238	-1110.743745	0.077	0.259
3C4	0.47	0.160	-1110.743241	0.393	0.152

 Table S8. Energy Analysis of Conformers of (S)-3

REFERENCES

(29) Spartan 10, Wavefunction, Inc.: Irvine, CA.

(30) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09*, Revision C.01; Gaussian, Inc., Wallingford CT, 2010.

(31) Gausssum 2.25: N. M. O'Boyle, A. L. Tenderholt and K. M. Langner, J. Comput. Chem. 2008, 29, 839-845.