Supporting Information

Increasing power density and dye decolorization of X-3B-fed microbial fuel cell via prior TiO₂ photocatalysis

Lin Su¹, Xianpeng Fan¹, Tao Yin¹, Haihua Chen², Xiaoxia Lin^{1,4}, Chunwei Yuan¹, Degang Fu^{1, 2, 3*} 1. State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China

- 2. School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210096, China
 - 3. Suzhou Key Laboratory of Environment and Biosafety, Suzhou, 215123, China
 - 4. School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China *Corresponding author. Tel.: +86 025 83793091. E-mail address: fudegang@seu.edu.cn

Table S1

Degradation of azo dyes based on MFC/BES or TiO₂ photocatalysis (Selected research)

References	Dye Concentration	Degradation rate	Power density	Strategy
	(mg/L)		(mW/m²)	
Guo, W. (2014) 1	300	92% (vs. 80%)*	368 (vs. 182)	graphene-based anode modification (vs. Un-modified anode)
Cui, D. (2014) 2	200	95.1%	-	series ABR-BES with external voltages
Yadav, A. K. (2012) ³	500-2000	93.15%	15.73	constructed wetland-MFC
	(best at 500)			
Sun, J. (2013) 4	300	100% (vs.43%)	100 (vs. 53.1)	add additional redox mediator (vs. None redox mediator)
Fernando, E. (2013)⁵	360	90%	25.6 (vs. 13.22)	dye acclimated microbial cultures (vs. none acclimated MFCs)
Khanna, A.(2013) ⁶	10	100%	-	Ag@TiO ₂ under solar light
llinoiu, E. C. (2013) ⁷	25	89.62%	-	nitrogen-doped TiO_{2} photocatalyst under UV light
Wang, X. (2015) ⁸	80	97%	-	photocatalysis combined with electrolysis and water jet cavitation
This research	200	56.5% (vs. 42%)	392 (vs. 276)	photocatalysis pretreatment (vs. without pretreatment)

* Control group data in the brackets

Synthesis of photocatalyst

The photocatalyst was synthesized according to our previous researches ⁹. In short, F-doped nano-TiO₂ sol and magnetic activated carbon powder fabricated by the adsorption of ACG with Fe₃O₄-sol were

mixed under magnetic stirring for 1 hour, then rotary evaporation at 75°C to obtain the composite

particles. After washing with ultra-pure water for three times, drying and grinding in a corundum mortar, the composite could be used as the photocatalyst. The F doping enables the catalyst having a visible light activity, while Fe₃O₄ confers the ability to separate the catalyst powders from reaction solution via magnetic field. From a practical point of view, these characters will bring people great convenience for isolating and reusing the catalyst, as well as realizing an energy-saving pretreatment of X-3B by solar energy.

Fig.S1 Histogram of coulombic efficiency for MFC supplied with different concentrations of glucose mixing with 100 mg/L X-3B in substrates. The Coulombic efficiency was calculated as $CE = C_P/C_T \times 100\%$, where C_P is the total coulombs calculated by integrating the current over time. C_T is the theoretical amount of coulombs that can be produced from substrate, calculated as $C_T = Fb_{es}V_{An}\Delta C/M_s$, where F is Faraday's constant (96 485 C/mol electrons), b_{es} is the number of moles of electrons produced per mol of substrate, V_{An} is the liquid volume of anode chamber, ΔC is the substrate concentration variation before and after one cycle operation, and M_s is the molecular weight of glucose.

Fig.S2 Output voltage - time curve of the MFC supplied with $Glu-X_M-200$ and $Glu-X_{PM}-200$ in two consecutive running respectively.

Fig.S3 The power density and polarization curve of the *Shewanella* PV-4 incubated MFC operated under different substrates. **Blank** stands for the normal medium solution containing 100 mM PBS buffer and 10 mM sodium lactate, **X-3B** indicates the substrate containing normal medium plus 200 mg/L X-3B dye, while **deX-3B** represents the substrate containing normal medium plus pretreated X-3B (200 mg/L) by TiO₂ photocatalysis. Most of power density was recovered when X-3B was treated by photocatalysis prior to its use in substrate.

Fig.S4 Simplified degradation pathway of X-3B during photocatalysis by nano-TiO₂ based on references ^{10, 11}.

Fig.S5 Neighbor-joining trees (MEGA5, neighbor-joining method) showing phylogenetic relationships of 16S rDNA sequences clones of identified gel bands. Capital letter A to F refer to the strains corresponding to DGGE bands of 3, 7, 9, 11, 12, 13 in Fig.6A in the text.

Fig.S6 The schematic process of the photocatalysis pretreatment of X-3B using as prepared photocatalyst. After photocatalysis, the catalyst was easily separated from solution by magnetic field.

Fig.S7 The degradation curve of X-3B under solar light photocatalysis using as prepared photocatalyst (October, Nanjing, China).

References:

1. W. Guo, Y. R. Cui, H. Song and J. H. Sun, BIOPROC BIOSYST ENG, 2014, 37, 1749-1758.

2. D. Cui, Y. Q. Guo, H. S. Lee, W. M. Wu, B. Liang, A. J. Wang and H. Y. Cheng, *BIORESOURCE TECHNOL*, 2014, 163, 254-261.

- 3. A. K. Yadav, P. Dash, A. Mohanty, R. Abbassi and B. K. Mishra, ECOL ENG, 2012, 47, 126-131.
- 4. J. Sun, W. J. Li, Y. M. Li, Y. Y. Hu and Y. P. Zhang, BIORESOURCE TECHNOL, 2013, 142, 407-414.
- 5. E. Fernando, T. Keshavarz and G. Kyazze, BIORESOURCE TECHNOL, 2013, 127, 1-8.
- 6. A. Khanna and V. Shetty K, ENVIRON SCI POLLUT R, 2013, 20, 5692-5707.

7. E. C. Ilinoiu, R. Pode, F. Manea, L. A. Colar, A. Jakab, C. Orha, C. Ratiu, C. Lazau and P. Sfarloaga, *J TAIWAN INST CHEM E*, 2013, 44, 270-278.

- 8. X. Wang, J. Jia and Y. Wang, ULTRASON SONOCHEM, 2015, 23, 93-99.
- 9. L. Xiao-Xia, J. Xiang, F. De-Gang and H. Ling-Yun, JINORG MATER, 2013, 28, 997-1002.
- 10. D. Cui, Y. Guo, H. Cheng, B. Liang, F. Kong, H. Lee and A. Wang, JHAZARD MATER, 2012, 239-240, 257-264.
- 11. Y. Zhang, X. Dou, J. Liu, M. Yang, L. Zhang and Y. Kamagata, CATAL TODAY, 2007, 126, 387-393.