

Fig. S1 (a) TGA curve of magnesium citrate, and (b) the heat treatment procedures.

Fig. S2 Microstructure properties of HPC and YP-17D: (a) nitrogen adsorptiondesorption isotherms and corresponding PSD curves (inset); (b) XPS spectra.

Fig. S3 CV curves at various scan rates for HPC and YP-17D electrodes.

Fig. S4 Rate performance comparison in supercapacitor electrodes based on N-HPC and other previously reported advanced porous carbons: graphene/CMK-5 [1], graphene-based aerogels [2], nitrogen doped reduced graphene oxide [3], activated porous carbon [4].

Fig. S5 EIS spectra of N-HPC, HPC and YP-17D electrodes.

Fig. S6 Nitrogen adsorption isotherms and corresponding PSD curves of N-HPC before and after sulfur loading.

Fig. S7 SEM images and elemental mapping of C and S for (a) N-HPC/S composite, and (b) YP-17D/S composite.

	511	1	-			
Sample name	\mathbf{S}_{BET}	$S_{micro} (m^2/g)$	V_T (cm ³ /g)	V _{micro} (cm ³ /g)	pore size (nm)	
	(m^{2}/g)					
N-HPC	1290	400	3.04	0.30	0.7, 3.8, 8.9, 11.2	
HPC	1222	382	2.76	0.28	0.7, 3.8, 8.9, 11.2	
YP-17D	1487	1356	0.74	0.56	1.0, 3.8	

Table S1 Porosity properties of the porous carbon samples

S_{BET}: Specific surface area calculated by BET method.

 S_{micro} : Specific surface area of micropores calculated by BET method.

V_T: Total pore volume.

V_{micro}: Micropore volume.

Table S2 Comparison of electrochemical performances of this work and previously reported references.

Carbon matrix	C _{electrode} at	C _{electrode} at	Sulfur	C _{electrode} after	Ref.
	low rate	high rate	loading	cycling	
Hard-templated porous	738 mAh g-	89 mAh g ⁻¹	75%	602 mAh g ⁻¹ after	[5]
carbon	¹ at 0.1 C	at 2 C		80 cyles at 0.1 C	
Porous graphitic carbon	552 mAh g-	274 mAh g-	88.9%	343 mAh g ⁻¹ after	[6]
	¹ at 0.1 C	¹ at 4 C		200 cyles at 0.5 C	
Peapodlike mesoporous	739 mAh g ⁻	342 mAh g ⁻	84%	256 mAh g ⁻¹ after	[7]
carbon	¹ at 0.2 C	¹ at 1 C		50 cyles at 0.2 C	
Biomass derived	792 mAh g ⁻	390 mAh g-	60%	468 mAh g ⁻¹ after	[8]
activated carbon	¹ at 0.2 C	¹ at 2 C		100 cyles at 0.2 C	
Porous hollow carbon	761 mAh g ⁻	302 mAh g-	70%	650 mAh g ⁻¹ after	[9]
	¹ at 0.1 C	¹ at 3 C		100 cyles at 0.5 C	
Graphene based porous	635 mAh g-	366 mAh g-	68%	399 mAh g ⁻¹ after	[10]
carbon	¹ at 0.25 C	¹ at 5 C		100 cyles at 0.5 C	
N-HPC	702 mAh g-	409 mAh g-	76.2%	366 mAh g ⁻¹ after	This
	¹ at 0.1 C	¹ at 4 C		300 cyles at 0.5 C	work

 $C_{\text{electrode}}$: Specific capacity based on the total mass of the electrode.

[1] Z. Lei, Z. Liu, H. Wang, X. Sun, L. Lu, X. Zhao, A high-energy-density supercapacitor with graphene–CMK-5 as the electrode and ionic liquid as the electrolyte, Journal of Materials Chemistry A, 1 (2013) 2313.

[2] Y. Qian, I.M. Ismail, A. Stein, Ultralight, high-surface-area, multifunctional graphene-based aerogels from self-assembly of graphene oxide and resol, Carbon, 68 (2014) 221.

[3] J. Yang, M.R. Jo, M. Kang, Y.S. Huh, H. Jung, Y.-M. Kang, Rapid and controllable synthesis of nitrogen doped reduced graphene oxide using microwave-assisted hydrothermal reaction for high power-density supercapacitors, Carbon, 73 (2014) 106.

[4] B. Xu, S. Hou, G. Cao, M. Chu, Y. Yang, Easy synthesis of a high surface area, hierarchical porous carbon for high-performance supercapacitors, RSC Advances, 3 (2013) 17500.

[5] P. Strubel, S. Thieme, T. Biemelt, A. Helmer, M. Oschatz, J. Brückner, H. Althues, S. Kaskel, ZnO Hard Templating for Synthesis of Hierarchical Porous Carbons with

Tailored Porosity and High Performance in Lithium - Sulfur Battery, Advanced

Functional Materials, 25 (2015) 287.

[6] G.-L. Xu, Y.-F. Xu, J.-C. Fang, X.-X. Peng, F. Fu, L. Huang, J.-T. Li, S.-G. Sun, Porous Graphitic Carbon Loading Ultra High Sulfur as High-Performance Cathode of Rechargeable Lithium–Sulfur Batteries, ACS applied materials & interfaces, 5 (2013) 10782.

[7] D. Li, F. Han, S. Wang, F. Cheng, Q. Sun, W.-C. Li, High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium–sulfur battery, ACS applied materials & interfaces, 5 (2013) 2208.

[8] J. Zhang, J. Xiang, Z. Dong, Y. Liu, Y. Wu, C. Xu, G. Du, Biomass derived activated carbon with 3D connected architecture for rechargeable lithium– sulfur batteries, Electrochimica Acta, 116 (2014) 146.

[9] N. Jayaprakash, J. Shen, S.S. Moganty, A. Corona, L.A. Archer, Porous Hollow

Carbon@ Sulfur Composites for High - Power Lithium-Sulfur Batteries,

Angewandte Chemie, 123 (2011) 6026.

[10] X. Yang, L. Zhang, F. Zhang, Y. Huang, Y. Chen, Sulfur-Infiltrated Graphene-Based Layered Porous Carbon Cathodes for High-Performance Lithium–Sulfur Batteries, ACS nano, 8 (2014) 5208.