

RSC Advances

ARTICLE

Preparing acid-resistant Ru-based catalysts by carbothermal reduction for hydrogenation of itaconic acid

Qianqian Huang^{ab}, Weiqiang Yu^{*a}, Rui Lu^{ab}, Fang Lu^a, Jin Gao^a, Hong Miao^aand Jie Xu^{*a}

^aState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, P. R. China. E-mail: <u>xujie@dicp.ac.cn</u>; <u>yuweiqianq@dicp.ac.cn</u>; Fax: +86-411-8437-9245; Tel: +86-411-8437-9245

^bUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China.

SUPPLEMENTARY INFORMATION

S1 Characterization of catalyst

S1.1 N₂ Physical Adsorption

Fig. S1 N₂ physisorption of supports and catalysts

Sample	S _{BET} (m²/g)	Pore Volume(cm ³ /g)				
		Total Pore Volume	Caculated by	Caculated by		
		At P/Po = 0.99	BJH method	HK method		
AC	1130	0.60	0.16	0.46		
Ru/AC-C	1080	0.70	0.29	0.44		
Ru/AC-H	1090	0.62	0.19	0.44		

S2 Research of carbothermal reduction process

S2.1 MS spectrum of TPR tests

Fig. S2 MS profiles of H₂-TPR tests of Ru(Cl)/AC and Ru/AC-C in Fig.3

S2.2 Surface chemistry property of dried RuCl₃ and Ru(Cl)/AC

Surface chemistry property of as-synthesised samples was performed with XPS. The spectra in the vicinity of the Ru3d and Ru3p peaks of these samples were shown in the following Fig. S3. Due to the strong C1s peak from activated carbon around 284.6 eV overlap with characteristic peak of Ru3d transition, it was difficult to analysis the surface chemistry state of Ru species. The sample that RuCl₃ without carbon supports dried in air at 110 °C were prepared to research surface chemistry property of Ru precursors. As shown in Fig. S3, the middle peak at 284.6 eV was ascribed to C1s contamination peaks, which had lower intensity in dried RuCl₃. And there were two well-resolved peaks at 286.7 eV and 282.6 eV separated by approximately 4.1 eV corresponding to Ru3d_{3/2} and Ru3d_{5/2}. It was found that there was a pair of two smaller peaks at 286.2 eV and 282.1 eV by peak-differentation-imitating analysis. That indicated there were at least two kinds of Ru chemical states. There were two pair peaks of Ru3p_{1/2} and Ru3p_{3/2} in Ru3p transition, which were in accordance with the above analysis. Such peaks were probably attributed to RuCl₃•xH₂O and RuO_x as reported in literature.¹⁻⁴ Except the strong C1s transition, Ru(Cl)/AC had similar Ru3p and Ru3d peaks at the same binding energy with dried RuCl₃.

ARTICLE

Reference:

- 1. A. Bossi, F. Garbassi, A. Orlandi, G. Petrini, L. Zanderighi, Stud. Surf. Sci. Catal., 1979, 3, 405-416.
- 2. P.G.J. Koopman, A.P.G. Kieboom, H. van Bekkum, J. Catal., 1981, 69, 172-179.
- 3. V. Mazzieri, F. Coloma-Pascual, A. Arcoya, P. L'Argentiere, N. S. Figoli, *Appl. Surf. Sci.*, **2003**, *210*, 222-230.
- 4. J. Y. Shen, A.Adnot, S. Kaliaguine. V., Appl. Surf. Sci., 1991, 51, 47-60.

Fig. S3 XPS spectra of Ru3p and Ru3d transition in samples of dried RuCl₃, Ru(Cl)/AC

S3 In situ chemical absorbing and analyzing of the gas

Gas inlet 99.99% N₂ 0.1M Wet potassium 0.1M clarified NaOH iodide-starch AgNO₃ Quartz solution limewater test paper solution tube Tube furnace Gas outlet Including N2, Thermol CO_x , $HClO_x$ etc. couple

S3.1 Scheme of in-situ chemical absorbing and analyzing instruments

Scheme S1 In situ chemical absorbing and analyzing of the gas released in the reduction process.

S3.2 Calculation of amounts of CO₂ via chemical methods

Table S2 Amounts of CO2 calculated via chemical methods

Sample	Theoretical Ru content – (mmol/g)	Theoretical value of CO ₂ ^a (mmol/g)		Total absorbed	CO ₂ from	Measured
		C as reductant	CO as reductant	CO2 ^b (mmol/g)	(mmol/g)	(mmol/g)
AC				1.23		
Ru(Cl)/AC	0.42	0.32	0.63	1.61	1.05	0.56
Ru(CI)/AC900	0.43	0.32	0.64	1.61	1.06	0.54

a: Amounts of CO₂ calculated from the reduction reaction of Ru(III) to metallic Ru with C or CO as reducing species respectively. Ru^{III} + $3/4 \text{ C} \rightarrow \text{Ru}^0 + 3/4 \text{ CO}_2$; Ru^{III} + $3/2 \text{ CO} \rightarrow \text{Ru}^0 + 3/2 \text{ CO}_2$

b: Amounts of CO_2 absorbed using 0.1 M NaOH solution in the chemical absorption experiments and calculated from chemical titration of the absorption solution

c: Amounts of CO_2 released from the supports of catalysts using the results of AC in entry 1 for calculation.

d: Amounts of CO_2 produced in reduction calculated from the chemical absorption experiments, which equals the difference of total absorbed CO_2 minus CO_2 from support.

S4 Catalytic tests--hydrogenation of itaconic acid

S4.1 Standard curve of itaconic acid and methylsuccinic acid

The products were collected and analyzed by HPLC (Waters e2695) equipped with an UV/visible detector (Waters 2489) and a refractive index detector (Waters 2414), using Waters Atlantis T3 column with aqueous H_3PO_4 solution mixed with methanol as the mobile phase. The itaconic acid conversion and the selectivity of methylsuccinic acid were calculated by the standard curves of internal standard method.

Conversion of itaconic acid(%)= $\left[1 - \frac{\text{Mole of unreacted itaconic acid}}{\text{Mole of initial itaconic acid}}\right] \times 100 \%$ Selectivity of methylsuccinic acid (%)= $\frac{\text{Mole of formedmethylsuccinic acid}}{\text{Mole of reacted itaconic acid}} \times 100 \%$

Fig. S4 Standard curve graphs of itaconic acid and methylsuccinic acid using RID detector

16.00

S4.2 HPLC profiles of itaconic acid and methylsuccinic acid

S4.3 HPLC profiles of products detection in six recycle tests

Fig. S6 HPLC profiles of products detection for Ru/AC-C in 6 recycle times