Supporting Information

ZrO₂ nanoparticles as a reusable solid dual acid-base catalyst for facile one-pot synthesis of multi-functionalized spirooxindole derivatives under solvent free condition

Chandan Bodhak, Ashis Kundu and Animesh Pramanik* Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata-700 009, India; Fax: +91-33-2351-9755; Tel: +91-33-2484-1647. E-mail: animesh_in2001@yahoo.co.in

Contents	Page No.
Table of all synthesized compounds of 4 with % of yields and Melting points	S2-S5
Spectral Data of compounds 4a-s	S6-S24
Table of all synthesized compounds of 7 with % of yields and Melting points	S25-S29
Spectral Data of compounds 7a-w	S30-S52
Preparation of the catalyst	S53
UV-visivle spectra	S53
IR Spectra	S53-S54

Reaction Scheme:

Table S1: Synthesis of spiro[4*H*-pyran-3,3'-oxindoles] compounds **4a-s** through a threecomponent reaction

NC

`0

 $<_{\rm CN}^{\rm CN}$

 $\binom{\text{CN}}{\text{CN}}$

=0

=O

Ò.

ò

4j

10

8

^aIsolated Yields (%)

References:

(a) A. Mobinikhaledi, N. Foroughifar and M. A. B. Fard, *Synthetic Communications*, 2011, 41, 441; (b) A. Dandia, V. Parewa, A. K. Jain and K. S. Rathore, *Green Chem.*, 2011, 13, 2135; (c) S. Riyaz, A. Naidu and P. K. Dubey, *Lett. org. chem.*, 2012, 9, 101; (d) H. M. Meshram, D. A. Kumar, B. R. V. Prasad and P. R. Goud, *Helvetica Chimica Acta*, 2010, 93, 648; (e) R. Baharfar and R. Azimi, *Synthetic Communications*, 2014, 44, 89.

.....

Spectral Data of 4a-s:

S10

Reaction Scheme:

Table S2: Synthesis of spiro[indoline-3,4'(1H')-pyrano-[2,3-c]pyrazol-2-one compounds**7a-w**through a four-component reaction

Entry	1	2	3	4	Product (7)	Yield ^a (%)	Melting Point(°C)	Reference
1		<cn CN</cn 		H ₂ N-NH ₂	H ₂ N O N NC NH	90	278-280	2a
2		$<_{\rm CN}^{\rm CN}$		H ₂ N-NH ₂	$\begin{array}{c} & & & \\ H_2N & O & N \\ & & NC & \\ & & NC & \\ & & O & \\ & & & NH \\ \end{array}$	86	294-296	2a
3		<		H ₂ N-NH ₂	$H_{2}N \xrightarrow{O} H_{N}$ $H_{2}N \xrightarrow{O} N$ $NC \xrightarrow{N} O$ $F \xrightarrow{NC} NH$ $7c$	87	278-280	2a
4	Br O N H	<cn CN</cn 		H ₂ N-NH ₂	H ₂ N O H NC N Br NC NH 7d	84	282-284	2a
5		<		H ₂ N-NH ₂	H ₂ N O N NC N NC NH 7e	92	>300	2b

^aIsolated Yields (%)

Reference:

2. (a) P. Rai, M. Srivastava, J. Singh and J. Singh, New J. Chem., 2014, 38, 3181; (b) D. M. Pore,

P. G. Hegade, D. S. Gaikwad, P. B. Patil and J. D. Patil, Lett. org. chem., 2014, 11, 131; (c) Y.

M. Litvinov, A. A. Shestopalov, L. A. Rodinovskaya and A. M. Shestopalov, J. Comb. Chem.

2009, 11, 914.

Spectral Data of 7a-w:

S31

Preparation of the Catalyst:

Preparation of ZrO₂ nano particle: A solution of $ZrO_2Cl_2.8H_2O$ was condensed under a basic medium (pH ~ 10) at 0–5 °C and the solution was stirred for 24 h at 100°C. The colloidal particles were recovered by centrifugation, washed several times with water, dried and finally, the NPs were calcined at 500 °C for 4 h.³

UV-Vis spectrum: In the UV-Vis spectrum (Fig. S1) of freshly prepared ZrO_2 nanoparticles taken in solid state, a maxima was observed at 259 nm, which is equivalent to a band gap of 4.76 eV.³

Infrared spectra: The infrared spectrum of fresh ZrO_2 was depicted in Fig. S2a. The fresh ZrO_2 showed a characteristic broad band at $3453cm^{-1}$ and a broad band between 1600-1635 cm⁻¹, which are assigned to the O–H modes of chemisorbed water and/or terminated hydroxides at the surface of the nanoparticles.^{4,5} The infrared spectra of reused catalyst after five runs is depicted in Fig. S2b. It is important to note that all corresponding peaks are intact without any major

change in characteristics peak which indicates that structure of catalyst doesn't change even after 5 cycles.

Fig. S2 (a) FT-IR spectra of fresh ZrO₂ NPs and (b) reused ZrO₂ NPs after 5th cycle

References:

3. A. Saha, S. Payra and S. Banerjee, Green Chem., 2015, 17, 2859.

4. K. Nakanishi, Infrared Absorption Spectroscopy: Practical, Holden-Day, San Francisco, 1962.

5. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1997.

.....