Supporting Information

Chromogenic naked-eye detection of copper ion and fluoride

Ye Won Choi, Jae Jun Lee, Ga Rim You, Sun Young Lee, Cheal Kim*

Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail:chealkim@seoultech.ac.kr

Fig. S1 Job plot of 1 and Cu²⁺. The total concentrations of 1 and Cu²⁺ were 100 μ M.

Fig. S2 Positive-ion electrospray ionization mass spectrum of 1 (100 μ M) upon addition of 1 equiv of Cu(NO₃)₂.

Fig. S3 Benesi-Hildebrand plot of 1 (at 450 nm), assuming 1:1 stoichiometry for association between 1 and Cu^{2+} .

Fig. S4 Detection limit of 1 (20 μ M) for Cu²⁺ through change of absorbance at 450 nm.

Fig. S5 Recovery tests of 1-Cu²⁺-Al³⁺ in presence of I⁻ and 1-Cu²⁺- Fe²⁺ in presence of F⁻ in acetonitrile-water (7:3, v/v).

Fig. S6 Absorbance (at 450 nm) of **1** as a function of Cu^{2+} concentration ([**1**] = 20 µmol/L and $[Cu^{2+}] = 0 - 10 µmol/L$).

(b)

Excited State 1	Wavelength	Percent (%)	Main character	Oscillator strength
$H-2 \rightarrow L$	341.34 nm	79 %	ICT	0.8808
$H \rightarrow L+1$		20 %	ICT	

(c)

Fig. S7 (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1. (b) The major electronic transition energies and molecular orbital contributions for 1 (H = HOMO and L = LUMO). (c) Isosurface (0.030 electron bohr⁻³) of molecular orbitals participating in the major singlet excited states of 1.

Excited State 4	Wavelength	Percent (%)	Main character	Oscillator strength
$H-4 \rightarrow L(\beta)$	497.47 nm	32 %	LMCT	0.0487
$H-22 \rightarrow L(\beta)$		16 %	LMCT	
$H-20 \rightarrow L(\beta)$		15 %	LMCT	
$H-23 \rightarrow L(\beta)$		11 %	LMCT	
$H-24 \rightarrow L(\beta)$		7 %	ICT	
$H-11 \rightarrow L(\beta)$		4 %	LMCT	
H-6 \rightarrow L (β)		3 %	LMCT	
$H-15 \rightarrow L(\beta)$		3 %	LMCT	
$H-25 \rightarrow L(\beta)$		2 %	LMCT	
Excited State 9	Wavelength	Percent (%)	Main character	Oscillator strength
H-1 \rightarrow L (α)	403.68 nm	39 %	ICT	0.0772
H-1 \rightarrow L+1 (β)		55 %	ICT	
$H-2 \rightarrow L+1 \ (\beta)$		3 %	ICT	
Excited State 12	Wavelength	Percent (%)	Main character	Oscillator strength
$H-2 \rightarrow L(\alpha)$	377.69 nm	10 %	ICT	0.0938
$\text{H-2} \rightarrow \text{L+2} \; (\alpha)$		8 %	ICT	
H-1 \rightarrow L+1 (α)		6 %	ICT	
H-1 \rightarrow L+2 (α)		6 %	ICT	
$\mathrm{H} \rightarrow \mathrm{L+1}\;(\alpha)$		5 %	ICT	
$\text{H-6} \rightarrow \text{L}(\beta)$		37 %	LMCT	
$H-5 \rightarrow L(\beta)$		12 %	LMCT	
$\text{H-2} \rightarrow \text{L+1} \ (\beta)$		7 %	LMCT	
$\text{H-1} \rightarrow \text{L+2} \ (\beta)$		6 %	MLCT	
$\mathrm{H} \rightarrow \mathrm{L+2}\;(\beta)$		3 %	ICT	
$H-22 \rightarrow L(\beta)$		3 %	LMCT	
$\text{H-2} \rightarrow \text{L+3}(\beta)$		2 %	MLCT	
$H-4 \rightarrow L(\beta)$		2 %	LMCT	
$H_{-23} \rightarrow I_{-}(B)$		2 %	LMCT	

Fig. S8 (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1-Cu²⁺. (b) The major electronic transition energies and molecular orbital contributions for 1-Cu²⁺ (H = HOMO and L = LUMO / (α): α spin MO and (β): β spin MO).

Fig. S9 Isosurface (0.030 electron bohr³) of molecular orbitals (α spin) participating in the major singlet excited states of **1**-Cu²⁺.

Fig. S10 Isosurface (0.030 electron bohr⁻³) of molecular orbitals (β spin) participating in the major singlet excited states of **1**-Cu²⁺.

Fig. S11 Absorption changes of 1 (20 μ M) in the presence of tetrabutylamonium hydroxide (20 equiv) and tetrabutylamonium fluoride (30 equiv), respectively, in DMSO.

Fig. S12 Job plot of 1 and F⁻ in DMSO. The total concentrations of 1 and F⁻ were 50 μ M.

Fig. S13 Negative-ion electrospray ionization mass spectrum of 1 (100 μ M) upon addition of 1 equiv of TEAF.

Fig. S14 Benesi-Hildebrand plot of **1** (at 465 nm), assuming 1:1 stoichiometry for association between **1** and F⁻.

Fig. S15 Detection limit of 1 (20 μ M) for F⁻ through change of absorbance at 465 nm.