Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

{Co^{III}Mn^{III}}_n corrugated chains based on heteroleptic cyanido metalloligands

Maria-Gabriela Alexandru,^a Diana Visinescu, ^b Nadia Marino,^c Giovanni De Munno,^c Francesc

Lloret^d and Miguel Julve^d

- [a] Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University "Politehnica" of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania, Email address: alexandru.gabriela@gmail.com
- [b] Coordination and Supramolecular Chemistry Laboratory, "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, Bucharest-060021, Romania
- [c] Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via P. Bucci 14/c, 87030
- [d] Department of Chemistry, Syracuse University, Syracuse, NY 13244-4100, USA
- [e] Departament de Química Inorgànica/Instituto de Ciencia Molecular, Facultat de Química de la Universitat de València, C/ Catedrático José Beltrán, 46980 Paterna, València, Spain, E-mail adress: miguel.julve@uv.es

Figure S1. FTIR spectra for compounds 1 (a) and 2 (b)

Figure S2. Perspective view of a fragment of the crystal packing of 1 along the crystallographic b axis (a), showing two adjacent supramolecular layers. Main inter-layer interactions, of the aromatic stacking type, are highlighted in (b).

Figure S3. Perspective view of a fragment of the crystal packing of **2** along the crystallographic *b* axis (**a**), showing two adjacent supramolecular layers. Main inter-layer interactions, of the aromatic off-set stacking type, are highlighted in (**b**).

Figure S4. Frequency and temperature dependence of the in-phase magnetic susceptibility under external applied dc magnetic field of 2000 Oe in a ± 4 Oe oscillating field and in the frequency range 1000-10000 Hz for **2**.

Figure S5. Frequency and temperature dependence of the in-phase magnetic susceptibility under external applied dc magnetic field of 5000 Oe in a ± 4 Oe oscillating field and in the frequency range 1000-10000 Hz for 2.

Figure S6. Natural logarithm of the ratio of χ ["]_M over χ [']_M against 1/T at ten different frequencies under external applied dc magnetic field of 2000 Oe, for **2**.

Figure S7. Natural logarithm of the ratio of $\chi^{"}_{M}$ over $\chi^{'}_{M}$ against 1/T at eight different frequencies under external applied dc magnetic field of 5000 Oe, for **2**.

Figure S8. Cole-Cole plots for 2 under external applied dc magnetic field of 2000 Oe.

Figure S9. Cole-Cole plots for 2 under external applied dc magnetic field of 5000 Oe.

H _{dc} /Oe	T/K	α	χ_{s}^{a} / cm ³ mol ⁻¹	$\chi_{\rm T}^{\rm b}$ / cm ³ mol ⁻¹
2000	2.0	0.071	0.037	0.16
2000	2.2	0.071	0.038	0.15
5000	2.0	0.074	0.024	0.12
5000	2.2	0.074	0.025	0.12
5000	2.4	0.073	0.029	0.12

Table S1. Selected ac magnetic data for 2

^a Adiabatic susceptibility. ^b Isothermal susceptibility.

Figure S10. X-ray diffraction on powder for compound 1: experimental (—) and calculated (—)

Figure S11. X-ray diffraction on powder for compound 2: experimental (—) and calculated (—)