Supplementary Information

Synthesis of PAMAM (G2.0)-DBM. PAMAM (G2.0)-DBM was prepared by two steps. In the first step, Michael addition was applied to generate dimethylamino half terminated $G 0.5(10 \mathrm{~g}, 0.0083 \mathrm{~mol})$ was dropwise addition of 3-dimethylamino propylamine $(3.4 \mathrm{~g}, 0.0332 \mathrm{~mol})$ in methanol at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere, and the reaction was conducted at $40{ }^{\circ} \mathrm{C}$ for 48 h . Then the mixture was preferentially cooling to $0{ }^{\circ} \mathrm{C}$ which EDA ($2 \mathrm{~g}, 0.0332 \mathrm{~mol}$) was added drop wisely into under nitrogen atmosphere, and the rection was further conducted at $25^{\circ} \mathrm{C}$ for 48 h . Subsequently, the resulting material was distilled repetitively under reduced pressure to remove excess methanol and EDA, whereby $G 1.0$ bearing four dimethylamino terminals was obtained (labeled PAMAM (G1.0)-DMAPA).

In the second step, a tetrameric quaternary ammonium was introduced into PAMAM (G1.0)-DMAPA by dropwise addition of DBM ($5 \mathrm{~g}, 0.02 \mathrm{~mol}$) to PAMAM (G1.0)-DMAPA ($8 \mathrm{~g}, 0.005 \mathrm{~mol}$) in chloroform at $25^{\circ} \mathrm{C}$ under nitrogen atmosphere. Subsequently, the reaction was conducted at $60^{\circ} \mathrm{C}$ for 72 h . The resulting solution was washed with methanol/hexane (1/1 v / v) to remove excess DBM, then it further distilled repetitively under reduced pressure to remove excess methanol, hexane and chloroform, whereby G1.0 bearing tetrameric quaternary ammonium terminals was yielded (labeled PAMAM (G1.0)-DBM).
Synthesis of PAMAM (G1.0)-DBM and PAMAM (G2.0)-DBM monomers. PAMAM (G1.0)-DBM 3.3g (0.0013mol) was gradually added into 20 ml dimethylsulfoxide (DMSO), the mixture was dropwise addition of MAH ($2 \mathrm{~g}, 0.0067 \mathrm{~mol}$) in DMSO under nitrogen atmosphere. Then the ring-opening reaction was conducted at $70^{\circ} \mathrm{C}$ for more than 6 h . Consequently, the product was cooling to room temperature, filtered to obtain the precipitate. The resulting material was washed with methanol in excess dried in a vacuum 24h, whereby PAMAM (G1.0)-DBM monomer was yielded (labeled PAMAM (G1.0)DBMF). For the synthesis of PAMAM (G2.0)-DBMF, the procedure was repeated as mentioned above, noted that PAMAMG1.5 was starved-feed.
Synthesis of Amphoteric hyperbranched polymers (AMHPMs). A 100 ml three-necked round-bottom flask is equipped with a mechanical stirrer, nitrogen inlet, and a thermometer. 0.5 g PAMAM (G1.0)-DBMF or 0.65 g PAMAM (G2.0)-DBMF, 8.25 g AM, and 2.25 g AA dissolved in a certain volume of deionized water. The pH of the mixture solution was tuned to 7.0-7.2 utilizing $1 \mathrm{~mol} / \mathrm{L}$ sodium hydroxide solution. Then some volumes of deionized water was added to obtain $9.5 \%-10.0 \%$ mass concentration for total monomer. The procedure of synthesis and purification of polymer is consistent with the method in the literature. ${ }^{23}$ Here, two polymers are abbreviated as AMHPM-1 and AMHPM-2, respectively, which are consistent with the comonomer PAMAM (G1.0)-DBMF and PAMAM (G2.0)-DBMF.
The density of grafted arm of poly (AM-NaAA). Polymer density of grafted arm of hydrophilic chain poly (AM-NaAA) can be calculated by the equation: ${ }^{26}$

$$
\begin{equation*}
\rho=\frac{M_{\text {mon }}}{v_{\text {mon }} N_{A v}} \tag{1}
\end{equation*}
$$

Where, $v_{m o n}$ is the occupied volume of a single chemical monomer, $v_{m o n} \approx 100 \AA^{3} ; N_{A v}$ is the Avogadro number;
$v_{\text {mon }} N_{A v}$ is monomer molar volume; $v_{\text {mon }} N_{A v} \approx 60 \mathrm{~cm}^{3} ; M_{m o n}$ is average monomer molar mass; ρ is the polymer density.

Fig. S1 Procedure of Synthesis of amphoteric hyperbranched monomers.

Fig. S2 IR spectrum of G0.5, G1.5, PAMAM(2.0)-DBMF and AMHPM-2.

Fig. S3 ${ }^{1} \mathrm{H}$ NMR spectrum of G1.5 and PAMAM(2.0)-DBMF (the solution concentration $=50 \mathrm{mg} / \mathrm{L}, \mathrm{T}=25^{\circ} \mathrm{C}$).

1-ISCO pump 2-intermediate container 3-precision pressure instrument 4-iron stand 5 -container $\mathbf{6}^{-}$-millipore filter 7^{7-} packing washer 8^{-}production collector
Fig. S4 Scheme of the experimental setup used to measure the H_{c} of polymer solution.

Fig. S5 Scheme of measurement of H_{c} for polymer samples by using millipore filter method.

