Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2014

Direct electrochemical deposition of polyaniline nanowire arrays on reduced graphene oxide modified graphite electrode for direct electron transfer biocatalysis

Lin Xia, Jianfei Xia, Zonghua Wang*

Optimization of polyaniline(PANI) nanowires array electrochemical polymerization.

The Morphology of PANI nanostructures obtained under different electrochemical polymerization conditions was investigated by SEM.

Figure S1. SEM image of PANI modified RGO/GE obtained under different electrochemical paramters (a) 0.006 mA.cm⁻²; (b) 0.02 mA.cm⁻²; (c) 0.08 mA.cm⁻² by a constant current technique, and (d) by constant potential method with an applied potential of 0.8V. Electrolyte solution was composed of 0.1M aniline and 1 M HClO4. Time performed is 40mins.

Figure S2. Cyclic voltammograms of GO/GE (black) and RGO/GE(red), the GO/GE was electrochemically reduced to RGO/GE by applying a -1.0V potential for 200 seconds.

Figure S3. Stability of the PANI nanowire arrays based glucose sensor. I_t refers to the steady state current of the amperometric response of the same glucose sensor towards 5 mM glucose that tested at different time, I_m refers to the steady state current obtained at the first test. It/Im indicates the response current remained.