Supplementary Information for

Differentiation of multi-metal ions based on Fluorescent Dual–Emission Carbon Nanodots

Fei Qu^{a,b,1*}, Shuai Wang^{a,b,1}, Dongya Liu^{a,b}, Jinmao You^{a,b,c,*}

^a The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu

273165, Shandong, China

^b Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine,

Qufu Normal University, Qufu 273165, Shandong, China

Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining
810001, China

*Corresponding authors at: Qufu Normal University, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu, China.

Tel.: +86 537 4456305; Fax: +86 537 4456305.

E-mail addresses:

qufei3323@163.com (F. Qu)

jmyou6304@163.com (J. You).

¹ Fei Qu and Shuai Wang contributed equally to this work

Figure S1. TEM images of DECNDs synthesized in other alcohol-water binary systems (a, methanol-water; b, ethanol-water; c, ethylene glycol-water). The diameters of DECNDs synthesized in other alcohol-water binary systems were 2.2 nm for methanol-water, 1.8 nm for ethanol-water, and 1.81 nm for ethylene glycol-water.

Figure S2. UV-vis absorption and fluorescence spectra of blue emitters (a, c, e) and yellow emitters (b, d, f) synthesized in other alcohol-water binary systems (a, b: methanol-water; c, d: ethanol-water; e, f: ethylene glycol-water).

Figure S3. Fluorescence spectra (a, d, g, blue emitters; b, e, h, yellow emitters) and the fluorescence color changes of DECNDs synthesized in other alcohol-water binary systems with the addition of Fe³⁺, Al³⁺ and Bi³⁺ under UV light at 365 nm (c, f and i). a, b and c was DECNDs synthesized in methanol-water system; d, e and f was DECNDs synthesized in ethanol-water system; g, h and i was DECNDs synthesized in ethanol-water system; d, e and f was becomes a synthesized in ethylene glycol-water system. Concentrations: a, Fe³⁺, Bi³⁺ and Al³⁺ were 100 μ M; b, c, e, f, h and i, Fe³⁺ was 100 μ M, and Bi³⁺ / Al³⁺ was 30 μ M; d and g, Fe³⁺ was 50 μ M, and Bi³⁺ / Al³⁺ was 100 μ M.

Figure S4. The influence of probe concentration on the detection of Fe³⁺ (a, 200 μ M), Bi³⁺ (b, 20 μ M) and Al³⁺ (c, 30 μ M).

Figure S5. Influence of pH values on the fluorescence of DECNDs. The different pH values were adjusted by adding HCl or NaOH from pH 1 to 12 (a, blue emitters; b, yellow emitters).

Figure S6. The influence of pH values on the detection of Fe³⁺, Bi³⁺ and Al³⁺ (a, the concentration of Fe³⁺ was 200 μ M in 0.1 M Tris-Hcl buffer; b, the concentration of Bi³⁺ was 20 μ M in 0.2 M HAC-NaAC; c, the concentration of Al³⁺ was 30 μ M in 0.2 M HAC-NaAC).

Figure S7. The influence of reaction time on the detection of Fe³⁺, Bi³⁺ and Al³⁺ (a, 200 μ M Fe³⁺; b, 20 μ M Bi³⁺; c, 30 μ M Al³⁺).

Figure S8. Fluorescence spectra of DECNDs synthesized in other alcohol-water binary systems (a, b and c: methanol-water; d, e and f: ethanol-water; g, h and i: ethylene glycol-water) with addition of various amounts of Fe^{3+} , Bi^{3+} and Al^{3+} and the corresponding linear ranges (inset).

Figure S9. Selectivity of DECNDs synthesized in other alcohol-water binary systems for the detection of Fe³⁺, Bi³⁺ and Al³⁺ (a, b and c, methanol-water; d, e and f, ethanol-water; g, h and i, ethylene glycol-water): a, d and g, the concentrations of all the metal ions were 100 μ M; b, e and h, the concentrations of Ce³⁺, Mg²⁺, Sr²⁺, Zn²⁺, Fe²⁺, Cu²⁺, Ni²⁺, Ag⁺, Co²⁺ were 50 μ M and Cr³⁺, Na⁺, Mn²⁺, K⁺, Ba²⁺, Pb²⁺, Hg²⁺ were 100 μ M, except for Bi³⁺ was 20 μ M ; c, f and i, the concentrations of Al³⁺ and Bi³⁺ were 20 μ M and other metal ions were 100 μ M.

Figure S10. Fluorescence spectra of DECNDs in absence (blank) and presence of Fe^{3+} and hydrated iron. The concentrations of Fe^{3+} and hydrated iron were 100 μ M.

Figure S11. FT-IR spectra of the DECNDs in absence and presence of $Bi^{3+}(a)$, and $Al^{3+}(b)$.

synthesized in alcohol-water binary systems. Alcohol-water Excitation

Table S1. Comparison of linear ranges and LODs of Fe³⁺, Bi³⁺ and Al³⁺ by DECNDs

binary systems	Metal ions	Linear range	wavelength	LOD
methanol-water	Fe ³⁺	0.5 μΜ - 100 μΜ	315 nm	150 nM
	Bi ³⁺	0.5 μΜ - 30 μΜ	365 nm	220 nM
	Al ³⁺	0.1 μΜ - 30 μΜ	365 nm	60 nM
ethanol-water	Fe ³⁺	1 μΜ - 100 μΜ	315 nm	771 nM
	Bi ³⁺	3 μΜ - 30 μΜ	365 nm	710 nM
	Al ³⁺	0.01 μΜ - 50 μΜ	365 nm	4 nM
n-propanol-water	Fe ³⁺	0.5 μΜ - 250 μΜ	315 nm	200 nM
	Bi ³⁺	0.5 μΜ - 30 μΜ	365 nm	150 nM
	Al ³⁺	0.3 μΜ - 30 μΜ	365 nm	100 nM
ethylene glycol- water	Fe ³⁺	1 μM - 200 μM	315 nm	300 nM
	Bi ³⁺	0.5 μΜ - 10 μΜ	365 nm	200 nM
	Al ³⁺	0.05 μΜ - 70 μΜ	365 nm	20 nM