Effect of N-based additive on the optimization of liquid phase oxidation of bicyclic, cyclic and aromatic alcohols catalyzed by dioxidomolybdenum(VI) and oxidoperoxidomolybdenum(VI) complexes

Mannar R. Maurya, Neeraj Saini and Fernando Avecilla

Table S1 Detail of thermogravimetric analysis of complexes

Compounds	Decomp. Temp.	% MeOH		Decomp. Temp.	% N	% MoO ₃	
	[MeOH/ °C]	Calc.	Obs.	$[MoO_3/ °C]$	Calc.	Obs.	
$[Mo^{VI}O_2(L^1)(MeOH)]$ 1	159-230	6.00	5.94	553	27.01	26.98	
$[Mo^{VI}O_2(L^2)(MeOH)]$ 2	135-200	6.54	6.15	540	29.47	29.00	
$[Mo^{IV}O(O_2)(L^1)(MeOH)]$ 3	155-217	5.85	6.13	544	26.32	25.74	
[Mo ^{IV} O(O ₂)(L ²)(MeOH)] 4	150-190	6.36	6.47	532	28.63	28.11	

Table S2 Conversion of fenchyl alcohol (1.54 g, 0.010 mol) using $[Mo^{VI}O_2(L^1)(MeOH)]$ **1** as catalyst precursor in presence of NEt₃ (0.05 g, 0.0005 mol) in 6 h of reaction time under different reaction conditions

Entry No.	Catalyst [g (mmol)]	$H_2O_2[g (mol)]$	CH ₃ CN [mL]	Temp. [⁰ C]	Conv. [%]
1	0.001 (1.8×10 ⁻³)	3.39 (0.030)	5	80	62
2	0.002 (3.8×10 ⁻³)	3.39 (0.030)	5	80	71
3	0.003 (5.6×10 ⁻³)	3.39 (0.030)	5	80	74
4	0.003 (5.6×10 ⁻³)	2.26 (0.020)	5	80	69
5	0.003 (5.6×10 ⁻³)	4.52 (0.040)	5	80	80
6	0.003 (5.6×10 ⁻³)	3.39 (0.030)	7	80	70
7	0.003 (5.6×10 ⁻³)	3.39 (0.030)	9	80	66
8	0.003 (5.6×10 ⁻³)	3.39 (0.030)	5	70	72
9	0.003 (5.6×10 ⁻³)	3.39 (0.030)	5	60	63

Table S3 Conversion of benzyl alcohol (0.54 g, 0.005 mol) using $[Mo^{VI}O_2(L^1)(MeOH)]$ (1) as catalyst precursor and in presence of NEt₃ (0.05 g, 0.0005 mol) in 5 h of reaction time under different reaction conditions.

Entry No.	Catalyst [g (mmol)]	H ₂ O ₂ [g (mmol)]	CH ₃ CN [mL]	Temp. [⁰ C]	Conv. [%]
1	0.001 (1.8×10 ⁻³)	1.13 (10)	5	80	49
2	0.002 (3.8×10 ⁻³)	1.13 (10)	5	80	66
3	0.003 (5.6×10 ⁻³)	1.13 (10)	5	80	56
4	0.002 (3.8×10 ⁻³)	0.57 (5)	5	80	52
5	0.002 (3.8×10 ⁻³)	1.69 (15)	5	80	45
6	0.002 (3.8×10 ⁻³)	1.13 (10)	7	80	53
7	0.002 (3.8×10 ⁻³)	1.13 (10)	9	80	48
8	0.002 (3.8×10 ⁻³)	1.13 (10)	5	70	56
9	0.002 (3.8×10 ⁻³)	1.13 (10)	5	60	43

Table S4 Conversion of cumic alcohol (0.75 g, 0.005 mol) using $[Mo^{VI}O_2(L^1)(MeOH)]$ (1) as catalyst precursor and in presence of NEt₃ (0.05 g, 0.0005 mol) in 8 h of reaction time under different reaction conditions.

Entry No.	Catalyst [g (mmol)]	$H_2O_2[g (mol)]$	CH ₃ CN [mL]	Temp. [⁰ C]	Conv. [%]
1	0.001 (1.8×10 ⁻³)	1.69 (0.015)	5	80	37
2	0.002 (3.8×10 ⁻³)	1.69 (0.015)	5	80	45
3	0.003 (5.6×10 ⁻³)	1.69 (0.015)	5	80	43
4	0.002 (3.8×10 ⁻³)	1.13 (0.010)	5	80	59
5	0.002 (3.8×10 ⁻³)	2.26 (0.020)	5	80	40
6	0.002 (3.8×10 ⁻³)	1.13 (0.010)	3	80	42
7	0.002 (3.8×10 ⁻³)	1.13 (0.010)	7	80	53
8	0.002 (3.8×10 ⁻³)	1.13 (0.010)	5	70	49
9	0.002 (3.8×10 ⁻³)	1.13 (0.010)	5	60	38

Table S5 Conversion of benzyl alcohol ^a	¹ and the selectivity of different products.
--	---

Catalysts	With additive			Without add	Without additive			
	Conv. [%]	а	b	с	Conv. [%]	а	b	с
[Mo ^{VI} O ₂ (L ¹)(MeOH)] 1	66	23	64	13	59	18	67	11
$[Mo^{VI}O_2(L^2)(MeOH)]$ 2	61	21	60	19	54	15	69	16
$[Mo^{VI}O(O_2)(L^1)(MeOH)] 3$	74	33	52	15	68	31	55	14
$[Mo^{VI}O(O_2)(L^2)(MeOH)] 4$	69	26	49	23	63	17	62	21

^a a: benzaldehyde, b: benzoic acid and c: benzylbenzoate.

Fig. S1 Electronic spectra (200 to 450 nm range) of two ligands, H_2L^1 I and H_2L^2 II recorded in methanol solution. Solution concentration of ligands: H_2L^1 : 3.6×10⁻⁴ M and H_2L^2 : 4.3×10⁻⁴ M.

Fig. S2 (a) Effect of variation of amounts of catalyst $[Mo^{VI}O_2(L^1)(MeOH)]$ (1) (0.001, 0.002 and 0.003 g) on the oxidation of fenchyl alcohol. Reaction conditions: fenchyl alcohol (1.54 g, 0.010 mol), 30% H₂O₂ (3.39 g, 0.030 mol), MeCN (5 mL), NEt₃ (0.05 g, 0.0005 mol) at 80 °C for 6 h. (b) Effect of amounts of oxidant i.e. H₂O₂ (0.020, 0.030 and 0.040 mol) on the oxidation of fenchyl alcohol. Reaction conditions: fenchyl alcohol (1.54 g, 0.010 mol), MeCN (5 mL), 1 (0.003 g), NEt₃ (0.05 g, 0.0005 mol) at 80 °C for 6 h. (c) Effect of variation of amount of solvent (5, 7 and 9 mL) on the rate of the oxidation of fenchyl alcohol. Reaction conditions: fenchyl alcohol. Reaction conditions: fenchyl alcohol. Reaction conditions: fenchyl alcohol. Reaction conditions: fenchyl alcohol (1.54 g, 0.010 mol), 30% H₂O₂ (3.39 g, 0.030 mol), 1 (0.003 g), NEt₃ (0.05 g, 0.0005 mol) at 80 °C for 6 h. (c) Effect of variation of amount of solvent (5, 7 and 9 mL) on the rate of the oxidation of fenchyl alcohol. Reaction conditions: fenchyl alcohol. Reaction conditions: fenchyl alcohol (1.54 g, 0.010 mol), 30% H₂O₂ (3.39 g, 0.030 mol), 1 (0.003 g), NEt₃ (0.05 g, 0.0005 mol) at 80 °C for 6 h. (d) Effect of different temperatures (60, 70 and 80 °C) on the oxidation of fenchyl alcohol. Reaction conditions: fenchyl alcohol (1.54 g, 0.010 mol), 30% H₂O₂ (3.39 g, 0.030 mol), 1.0003 mol), 30% H₂O₂ (3.39 g, 0.030 mol), 0.030 mol), MeCN (5 mL), 1 (0.003 g) and NEt₃ (0.05 g, 0.0005 mol).

Fig. S3 (a) Effect of variation of amount of catalyst $[Mo^{VI}O_2(L^1)(MeOH)]$ (1) on the oxidation of benzyl alcohol. Reaction conditions: benzyl alcohol (0.54 g, 0.005 mol), 30% H₂O₂ (1.13 g, 0.010 mol), MeCN (5 mL) in presence of NEt₃ (0.05 g, 0.0005 mol) at 80 °C for 5 h. (b) Effect of amount of oxidant i.e. H₂O₂ on the oxidation of benzyl alcohol. Reaction conditions: benzyl alcohol (0.54 g, 0.005 mol), MeCN (5 mL), catalyst (0.002 g) in presence of NEt₃ (0.05 g, 0.0005 mol) at 80 °C for 5 h. (c) Effect of variation of amount of solvent on the rate of the oxidation of benzyl alcohol. Reaction conditions: benzyl alcohol. Reaction conditions: benzyl alcohol. Reaction conditions: benzyl alcohol (0.54 g, 0.005 mol), 30% H₂O₂ (1.13 g, 0.010 mol), catalyst (0.002 g) in presence of NEt₃ (0.05 g, 0.0005 mol) at 80 °C for 5 h. (c) Effect of variation of amount of solvent on the rate of the oxidation of benzyl alcohol. Reaction conditions: benzyl alcohol (0.54 g, 0.005 mol), 30% H₂O₂ (1.13 g, 0.010 mol), catalyst (0.002 g) in presence of NEt₃ (0.05 g, 0.0005 mol) at 80 °C for 5 h. (d) Effect of different temperature on the oxidation of benzyl alcohol. Reaction conditions: benzyl alcohol. Reaction conditions: benzyl alcohol (0.54 g, 0.005 mol), 30% H₂O₂ (1.13 g, 0.010 mol), 30% H₂O₂ (1.13 g, 0.010 mol), MeCN (5 mL) and catalysts (0.002 g) in presence of NEt₃ (0.05 g, 0.005 mol) at 80 °C for 5 h. (d) Effect of different temperature on the oxidation of benzyl alcohol. Reaction conditions: benzyl alcohol (0.54 g, 0.005 mol), 30% H₂O₂ (1.13 g, 0.010 mol), MeCN (5 mL) and catalysts (0.002 g) in presence of NEt₃ (0.05 g, 0.0005 mol) for 5 h.

Fig. S4 (a) Effect of variation of amount of catalyst $[Mo^{VI}O_2(L^1)(MeOH)]$ (1) on the oxidation of cumic alcohol. Reaction conditions: cumic alcohol (0.75 g, 0.005 mol), 30% H₂O₂ (1.69 g, 0.015 mol), MeCN (5 mL) in presence of NEt₃ (0.05 g, 0.0005 mol) at 80 °C for 8 h. (b) Effect of amount of oxidant i.e. H₂O₂ on the oxidation of cumic alcohol. Reaction conditions: cumic alcohol (0.75 g, 0.005 mol), MeCN (5 mL), catalyst (0.002 g) in presence of NEt₃ (0.05 g, 0.0005 mol) at 80 °C for 8 h. (c) Effect of variation of amount of solvent on the rate of the oxidation of cumic alcohol. Reaction conditions: cumic alcohol (0.75 g, 0.002 g) in presence of NEt₃ (0.05 g, 0.005 mol), at 80 °C for 8 h. (c) Effect of variation of amount of solvent on the rate of the oxidation of cumic alcohol. Reaction conditions: cumic alcohol (0.75 g, 0.002 g) in presence of NEt₃ (0.05 g, 0.005 mol), at 80 °C for 8 h. (d) Effect of different temperature on the oxidation of cumic alcohol. Reaction conditions: cumic alcohol. Reaction conditions: cumic alcohol. Reaction conditions: cumic alcohol (0.75 g, 0.005 mol), 30% H₂O₂ (1.13 g, 0.010 mol), catalyst (0.002 g) in presence of NEt₃ (0.05 g, 0.0005 mol) at 80 °C for 8 h. (d) Effect of different temperature on the oxidation of cumic alcohol. Reaction conditions: cumic alcohol (0.75 g, 0.005 mol), 30% H₂O₂ (1.13 g, 0.010 mol), MeCN (5 mL) catalysts (0.002 g) in presence of NEt₃ (0.05 g, 0.005 mol) for 8 h.

Fig. S5 (a) Effect of variation of amount of catalyst $[Mo^{VI}O_2(L^1)(MeOH)]$ (1) on the oxidation of cyclohexanol. Reaction conditions: cyclohexanol (0.5 g, 0.005 mol), 30% H₂O₂ (1.69 g, 0.015 mol), MeCN (5 mL), NEt₃ (0.05 g, 0.0005 mol) at 80 °C for 4 h. (b) Effect of amount of oxidant i.e. H₂O₂ on the oxidation of cyclohexanol. Reaction conditions: cyclohexanol (0.5 g, 0.005 mol), MeCN (5 mL), catalyst (0.003 g), NEt₃ (0.05 g, 0.0005 mol) at 80 °C for 4 h. (c) Effect of variation of amount of solvent on the rate of the oxidation of cyclohexanol. Reaction conditions: cyclohexanol (0.5 g, 0.005 mol), 30% H₂O₂ (1.69 g, 0.015 mol), catalyst (0.003 g) in presence of NEt₃ (0.05 g, 0.0005 mol) at 80 °C for 4 h. (d) Effect of different temperature on the oxidation of cyclohexanol. Reaction conditions: cyclohexanol. Reaction conditions: cyclohexanol. Reaction conditions: cyclohexanol (0.5 g, 0.005 mol) at 80 °C for 4 h. (d) Effect of different temperature on the oxidation of cyclohexanol. Reaction conditions: cyclohexanol (0.5 g, 0.005 mol) at 80 °C for 4 h. (d) Effect of different temperature on the oxidation of cyclohexanol. Reaction conditions: cyclohexanol (0.5 g, 0.005 mol), 30% H₂O₂ (1.69 g, 0.015 mol), 30% H₂O₂ (1.69 g, 0.015 mol), MeCN (7 mL), catalysts (0.003 g) in presence of NEt₃ (0.05 g, 0.0005 mol) for 4 h.