Supporting Information

Utilizing an Aggregate Forming Microenvironment Sensitive Coumarin-

Cholesterol Conjugate as a Sensor of Pluronic Organization and Micro-

polarity

Ivy Sarkar,^a H. Surya Prakash Rao,^b* Avinash Desai,^b Ashok Kumar Mishra^a*

^a Department of Chemistry, Indian Institute of Technology Madras, Chennai – 600 036 INDIA

^b Department of Chemistry, Pondicherry University, Pondicherry – 605 014 INDIA

Table S1: Few important parameters of P123 and F127.

Trade name	P123	F127
Formula	PEO ₂₀ -PPO ₇₀ -PEO ₂₀	PEO ₁₀₀ -PPO ₆₄ -PEO ₁₀₀
Core size (Å)	42.1	37.5
Corona thickness (Å)	24.4	70.2
HLB	8	22

Figure S1: Normalized fluorescence spectra of Cum-Chl in presence of 10% (a) P123 and (b) F127 with increasing temperature; at λ_{ex} 440 nm.

Figure S2: Variation of steady state fluorescence anisotropy (r_{SS}) of Cum-Chl monomer in presence of 10% P123 with increasing temperature; at λ_{ex} 440 nm.

Table S2: Fluorescence lifetime data of Cum-Chl monomer and aggregate form in presence of 10% P123 with increasing temperature, ($\lambda_{ex} = 444 \text{ nm}$, $\lambda_{em} = 470 \text{ nm}$ for monomer and $\lambda_{ex} = 444 \text{ nm}$, $\lambda_{em} = 566 \text{ nm}$ for aggregate).

Temperature	τ_1 (ns) (β_1)	τ_2 (ns) (β_2)	τ_{aveg}	χ^2	
([°] C)			(ns)		
5	0.66 (0.89)	2.03 (0.11)	0.81	1.38	
11	0.43 (0.78)	2.05 (0.22)	0.79	1.19	
15	0.31 (0.57)	2.59 (0.43)	1.29	1.25	Monomer
20	0.98 (0.44)	2.66 (0.56)	1.92	1.04	
24	0.81 (0.48)	2.61 (0.52)	1.75	1.06	
5	7.83 (0.53)	26.46 (0.47)	16.59	1.22	
11	4.87 (0.52)	25.83 (0.48)	14.93	1.34	
15	2.40 (0.92)	19.10 (0.08)	3.74	1.17	Aggregate
20	2.11 (0.93)	18.45 (0.07)	3.25	1.30	
24	2.05 (0.93)	17.87 (0.07)	3.16	1.33	

Figure S3: Residue distribution plots of Cum-Chl monomer and aggregate form in presence of 10% P123 with increasing temperature (corresponds to Table S2).

Figure S4: Normalized fluorescence spectra of Cum in presence of 10% (a) P123 and (b) F127 with increasing temperature; at λ_{ex} 440 nm.

Table S3: Fluorescence lifetime data of Cum in presence of 10% P123 with increasing temperature ($\lambda_{ex} = 444 \text{ nm}$, $\lambda_{em} = 480 \text{ nm}$).

Temperature (°C)	τ_1 (ns) (β_1)	τ_2 (ns) (β_2)	τ_{aveg} (ns)	χ^2
5	0.18 (0.99)	0.92 (0.01)	0.19	1.21
11	0.20 (0.99)	1.87 (0.01)	0.22	1.01
15	0.21 (0.96)	2.42 (0.04)	0.30	1.22
20	0.86 (0.63)	2.56 (0.37)	1.50	1.01
24	0.83 (0.63)	2.51 (0.37)	1.45	1.08

Figure S5: Residue distribution plots of Cum in presence of 10% P123 with increasing temperature (corresponds to Table S3).

Table S4: Fluorescence lifetime data of Cum in presence of 10% F127 with increasing temperature ($\lambda_{ex} = 444 \text{ nm}$, $\lambda_{em} = 480 \text{ nm}$).

Temperature (°C)	τ_1 (ns) (β_1)	τ_2 (ns) (β_2)	τ_{aveg} (ns)	χ^2
13	0.12 (0.99)	1.28 (0.01)	0.13	1.24
17	0.14 (0.99)	1.73 (0.01)	0.16	1.02
21	0.49 (0.76)	2.12 (0.24)	0.88	1.21
27	0.57 (0.74)	2.14 (0.26)	0.98	1.08
34	0.48 (0.76)	2.02 (0.24)	0.85	1.10

Figure S6: Residue distribution plots of Cum in presence of 10% F127 with increasing temperature (corresponds to Table S4).

Figure S7: Intrinsic fluorescence of 10% P123 and F127, (a) emission spectra at λ_{ex} 440 nm, (b) excitation spectra at λ_{em} 470 nm and (c) excitation spectra at λ_{em} 566 nm.

Figure S8: Normalized fluorescence spectra of Cum-Chl, with increasing % of P123 at (a) $10^{\circ}C$ and (b) $35^{\circ}C$ and with increasing % of F127 at (c) $10^{\circ}C$ and (d) $35^{\circ}C$; at λ_{ex} 440 nm.

Figure S9: Fluorescence excitation spectra of Cum-Chl ($\lambda_{em} = 566$ nm) in presence of (a) P123 and (b) F127 at 10°C, inset shows normalized spectra, fluorescence excitation spectra of Cum-Chl ($\lambda_{em} = 470$ nm) in presence of F127 at (c) 10°C and (d) 35°C.

Figure 10: Normalized fluorescence spectra of Cum, with increasing % of P123 at (a) $10^{\circ C}$ and (b) $35^{\circ C}$ and with increasing % of F127 at (c) $10^{\circ C}$ and (d) $35^{\circ C}$; at λ_{ex} 440 nm.