Supporting Information

Synthesis and highly enhanced acetylene sensing properties of Au

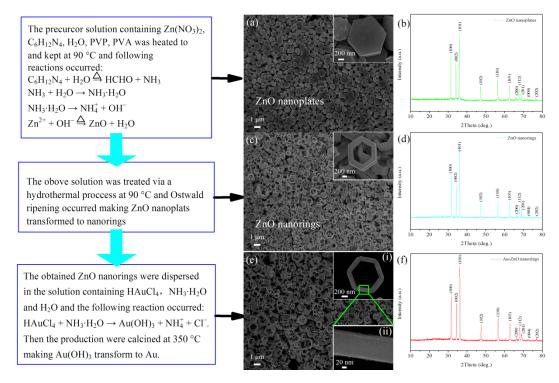
nanoparticle-decorated hexagonal ZnO nanorings

Chao Li,^{a, c} Ying Lin,^{a, c} Feng Li,^{a, c} Linghui Zhu,^{a, c} Fanxu Meng,^{*b}, Dongming Sun,^a

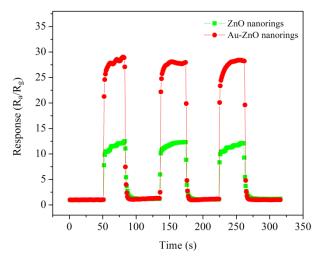
Jingran Zhou, *^a, Shengping Ruan*^c

^a State Key Laboratory on Integrated Optoelectronics, Jilin University, Changchun 130012, P.

R. China.


E-mail: zhoujr@jlu.edu.cn (J. Zhou)

^b Jilin Institute of Chemical Technology, Jilin City, 132022, PR China.


E-mail: E-mail: fxmengjlu@gmail.com (F. Meng)

^c College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.

E-mail: Ruansp@jlu.edu.cn (S. Ruan)

Figure S1. Synthesis process and formation mechanism of ZnO nanorings and Au-ZnO nanorings. (a) and (b) SEM images and XRD pattern of hexagonal ZnO nanoplates; (c) and (d) SEM images and XRD pattern of hexagonal ZnO nanoplates; (e) and (f) SEM images and XRD pattern of Au nanoparticle-decorated hexagonal ZnO nanorings.

Figure S2. Repeatability of the ZnO and Au-ZnO nanorings to 100 ppm acetylene at their optimum operating temperature.

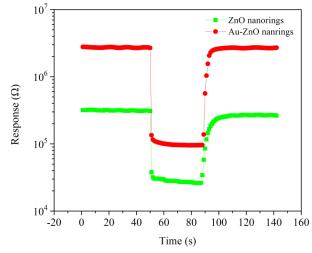


Figure S3. Transient resistance of ZnO and Au-ZnO nanorings to 100 ppm acetylene.