Supplementary Information

Hydrolytically active tetranuclear [Ni^{II}₂]₂ complexes: synthesis, structure, spectroscopy and phosphoester hydrolysis

Gopal C. Giri,^a Ayan Patra,^a Gonela Vijaykumar,^b Luca Carrella,^c and Manindranath Bera^{*a}

^aDepartment of Chemistry, University of Kalyani, Kalyani, West Bengal-741235, INDIA. E-mail: mbera2009@klyuniv.ac.in; http://www.klyuniv.ac.in; Fax: +91 33 25828282; Tel: +91 33 25828282 x306

^bDepartment of Chemical Sciences, Indian Institute of Science Education & Research Kolkata, Mohanpur, West Bengal-741246, INDIA.

^cInstitut fur Anorganische Chemie und Analytische Chemie, Johannes-Gutenberg Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.

Figures with Captions

Fig. S1 FTIR spectrum of the ligand H₅chdp in the region of 4000-450 cm⁻¹.

Fig. S2 ¹H NMR spectrum of the ligand H_5 chdp in D_2O .

Fig. S3 ¹³C NMR spectrum of the ligand H_5 chdp in D_2O .

Fig. S4 ESI mass spectrum (positive ion mode) of the ligand H₅chdp in methanol.

Fig. S5 FTIR spectrum of complex 1 in the region of 4000-450 cm⁻¹.

Fig. S6 UV-Vis spectra of complex **1** at (a) 10^{-3} (M) and (b) 10^{-4} (M) in methanol-water (1:1; v/v) solution at pH~7.5.

Fig. S7 ESI mass spectrum (positive ion mode) of complex 1 in methanol-water solution at $pH\sim7.5$.

Fig. S8 ESI mass spectrum (positive ion mode) of complex 2 in methanol-water solution at $pH\sim7.5$.

Fig. S9 ESI mass spectrum (positive ion mode) of complex 3 in methanol-water solution at $pH\sim7.5$.

Fig. S10(a) The experimental and simulated mass spectra of the peak at m/z = 1119 for complex 1 in methanol-water solution at pH~7.5.

Fig. S10(b) The representative experimental and simulated mass spectra of the peak at m/z = 560 for complex 1 in methanol-water solution at pH~7.5.

Fig. S11(a) The representative experimental and simulated mass spectra of the peak at m/z = 1119 for complex 3 in methanol-water solution at pH~7.5.

Fig. S11(b) The representative experimental and simulated mass spectra of the peak at m/z = 560 for complex 3 in methanol-water solution at pH~7.5.

Fig. S12 MS/MS spectrum (positive ion mode) of the peak at m/z = 1119 for complex 1 in methanol-water solution at pH~7.5.

Fig. S13 Potentiometric titration curve obtained by titrating complex **2** with 0.01 M NaOH. The experimental points (black squares) are in good agreement with the theoretical curve (red line).

Fig. S14 Potentiometric titration curve obtained by titrating complex **3** with 0.01 M NaOH. The experimental points (black squares) are in good agreement with the theoretical curve (red line).

Fig. S15 Species distribution curves of complex 3 as a function of pH.

Fig. S16 Dependence of the rate on the concentration of substrate (BNPP) for complex 1. Inset shows Lineweaver-Burk plot. [Complex] = 25×10^{-5} M; [Buffer] = 20×10^{-3} M; pH~11.8; I = 0.1 M (NaClO₄) in MeOH-H₂O (1:1; v/v) at 30°C.

Fig. S17 Dependence of the rate on the concentration of substrate (BNPP) for complex 2. Inset shows Lineweaver-Burk plot. [Complex] = 25×10^{-5} M; [Buffer] = 20×10^{-3} M; pH~11.8; I = 0.1 M (NaClO₄) in MeOH-H₂O (1:1; v/v) at 30°C.

Fig. S18 Dependence of the rate on the concentration of substrate (BNPP) for complex **3**. Inset shows Lineweaver-Burk plot. [Complex] = 25×10^{-5} M; [Buffer] = 20×10^{-3} M; pH~11.8; I = 0.1 M (NaClO₄) in MeOH-H₂O (1:1; v/v) at 30°C.