Electronic Supplementary information

Silver(I)-*N*-heterocyclic carbene catalyzed multicomponent reactions: a facile synthesis of multisubstituted pyridines

Shravankumar Kankala,^{*a*} Ramakanth Pagadala,^{*a*} Suresh Maddila,^{*a*} Chandra Sekhar Vasam,*^{*b,c*} Sreekantha B. Jonnalagadda*^{*a*}

^aSchool of Chemistry & Physics, University of Kwazulu-Natal, Westville Campus, Chiltern Hills, Durban-4000, South Africa. Fax: +27 31 260 3091; Tel: +27 31 260 7325/3090; E-mail: jonnalagaddas@ukzn.ac.za

^bDepartment of Chemistry, Satavahana University, Karimnagar, India.

^cDepartment of Pharmaceutical Chemistry, Telangana University, Nizamabad, India. Fax: +91-878-2255933; Tel: +91-9000285433; E-mail: vasamcs@yahoo.co.in

List of Contents

- 1. Table S1. Optimization of reaction parameters for the synthesis of 3a.
- 2. Table S2. Results of catalyst load experiment.
- 3. Spectra of pyridine compounds (3a-i & 4a-d).
- **4.** D_2O exchange study of compound (**3i**).
- 5. Single Crystal X-ray data of compound (3a).

СНО	Q_{i} (i) CH ₂ (CN) ₂		
\downarrow	(i) CH ₂ (Cl() ₂ (ii) CH ₂ CO ₂ NH ₄		
+	Catalyst, EtOH, r	t NC∖	
ОСН₂		- H _a NÍ	
1a	2a	11211	3a
Entry	Catalyst	Time (min.)	Yield $(\%)^a$
1	No Catalyst	360	
2	AgOAc	120	
3	AgOTf	120	
4	AgSbF ₆	120	
5	AgNO ₃	120	
6	Ag(I)-NHC (a)	10	94
7	Ag(I)-NHC (b)	12	86
8	Aq(I)-NHC (c)	10	90
9	Ag(I)-NHC (d)	10	90
10	Ag(I)-NHC (e)	10	88
10	Ag(I)-NHC (f)	15	91
12	Organo-NHC	40	32
12	Organo-NHC + AgOAc	15	84
14	Organo-NHC + AgOTf	15	80
15	DABCO	30	65 b
16	PPh ₃	45	50
17	AgOTf + DABCO	40	74
18	AgOTf + TEA	40	58
19	AgOTf + K ₂ CO ₃	40	52
20	AgOAc + DABCO	40	70
21	AgOTf + DBU	35	75
22	AgOAc + NaOAc	35	65
23	Cu(OAc) ₂ + DBU	60	55
24	AI(OTf) ₃ + DBU	60	45
25	Cu(OTf) ₂	120	
26	Ni(OTf) ₂	120	
27	Organo-NHC + Cu(OTf) ₂	30	68
28	Organo-NHC + Al(OTf) ₃	30	62
29	Organo-NHC + Sc(OTf) ₃	45	70
30	Organo-NHC + Ni(OTf) ₂	40	65
^a GC Yields.	^b Knoevenagel condensed prod	uct.	

1. Table S1. Optimization of reaction parameters for the synthesis of **3a**.

2. Table S2. Catalyst load experiment in the multicomponent reaction of 1a and 2a catalyzed by Ag(I)-NHC (i) catalyst.

CHO OCH ₃	+	(i) $CH_2(CN)_2$ (ii) $CH_3CO_2NH_4$ Cat., EtOH, 10 min., RT	NC H ₂ N N
1 a	2a		3 a
Entry		Ag(I)-NHC (a)	GC yield (%)
1		2.0 mol%	94
2		3.0 mol%	96
3		3.5 mol%	96
4		4.0 mol%	96

3. Spectra of pyridine compounds (3a-i & 4a-d).

FTIR spectra of pyridine compound 3a

FTIR spectra of pyridine compound **3b**

FTIR spectra of pyridine compound 3c

FTIR spectra of pyridine compound 3d

FTIR spectra of pyridine compound 3e

FTIR spectra of pyridine compound **3f**

S16

FTIR spectra of pyridine compound 3g

¹H NMR spectra of pyridine compound **3h**

 $^{13}\mathrm{C}$ NMR spectra of pyridine compound 3h

S19

¹³C NMR spectra of pyridine compound **3i**

¹H NMR spectra of pyridine compound **4a**

S22

FTIR spectra of pyridine compound 4a

¹³C NMR spectra of pyridine compound **4b**

S26

FTIR spectra of pyridine compound 4c

S27

4. D_2O exchange study of compound (**3i**).

S30

5. Single Crystal X-ray data of compound (3a).

Table 1. Crystal data and structure refinement for 14ub sbj sk1a 1 0ma. Identification code shelx Empirical formula C18 H19 N3 O Formula weight 293.36 Temperature 173(2) K 0.71073 Å Wavelength Orthorhombic Crystal system Space group Pbcn Unit cell dimensions a = 15.7449(9) Å $\alpha = 90^{\circ}$. b = 10.7620(7) Å β= 90°. c = 18.2213(12) Å $\gamma = 90^{\circ}$. 3087.5(3) Å³ Volume Ζ 8 Density (calculated) 1.262 Mg/m³ 0.080 mm⁻¹ Absorption coefficient F(000) 1248 0.380 x 0.300 x 0.260 mm³ Crystal size Theta range for data collection 2.235 to 27.996°. Index ranges -20<=h<=20, -14<=k<=13, -15<=l<=24 Reflections collected 37338 Independent reflections 3725 [R(int) = 0.0484]Completeness to theta = 25.242° 100.0 % Absorption correction Semi-empirical from equivalents 0.979 and 0.970 Max. and min. transmission Full-matrix least-squares on F² Refinement method 3725 / 0 / 207 Data / restraints / parameters Goodness-of-fit on F² 1.130 Final R indices [I>2sigma(I)] R1 = 0.0577, wR2 = 0.1617 R indices (all data) R1 = 0.0701, wR2 = 0.1728Extinction coefficient n/a 0.372 and -0.246 e.Å-3 Largest diff. peak and hole

	Х	у	Z	U(eq)
C(1)	7988(1)	3498(2)	2588(1)	31(1)
C(2)	7341(1)	3643(2)	3113(1)	31(1)
C(3)	7579(1)	4011(2)	3818(1)	31(1)
C(4)	8446(1)	4210(2)	3963(1)	31(1)
C(5)	9054(1)	4045(2)	3403(1)	31(1)
C(6)	6957(1)	4226(2)	4423(1)	32(1)
C(7)	6479(1)	3258(2)	4715(1)	35(1)
C(8)	5921(1)	3452(2)	5297(1)	39(1)
C(9)	5833(1)	4643(2)	5584(1)	39(1)
C(10)	6289(1)	5614(2)	5286(1)	43(1)
C(11)	6854(1)	5407(2)	4714(1)	40(1)
C(12)	8735(1)	4559(2)	4677(1)	39(1)
C(13)	7780(1)	3126(2)	1811(1)	37(1)
C(14)	7416(1)	1804(2)	1740(1)	46(1)
C(15)	6483(1)	1680(2)	1933(1)	45(1)
C(16)	6261(1)	2017(2)	2720(1)	44(1)
C(17)	6428(1)	3389(2)	2911(1)	37(1)
C(18)	4874(2)	3930(3)	6500(1)	65(1)
N(1)	8815(1)	3680(2)	2724(1)	33(1)
N(2)	9006(1)	4848(2)	5234(1)	59(1)
N(3)	9893(1)	4228(2)	3510(1)	42(1)
O(1)	5313(1)	4929(2)	6157(1)	53(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³)for 14ub_sbj_sk1a_1_0ma. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-N(1)	1.341(2)
C(1)-C(2)	1.405(2)
C(1)-C(13)	1.507(2)
C(2)-C(3)	1.396(2)
C(2)-C(17)	1.509(2)
C(3)-C(4)	1.407(2)
C(3)-C(6)	1.493(2)
C(4)-C(5)	1.410(2)
C(4)-C(12)	1.428(3)
C(5)-N(3)	1.350(2)
C(5)-N(1)	1.350(2)
C(6)-C(11)	1.388(3)
C(6)-C(7)	1.390(3)
C(7)-C(8)	1.393(3)
C(7)-H(7)	0.9500
C(8)-C(9)	1.392(3)
C(8)-H(8)	0.9500
C(9)-O(1)	1.362(2)
C(9)-C(10)	1.379(3)
C(10)-C(11)	1.388(3)
C(10)-H(10)	0.9500
C(11)-H(11)	0.9500
C(12)-N(2)	1.144(3)
C(13)-C(14)	1.539(3)
C(13)-H(13A)	0.9900
C(13)-H(13B)	0.9900
C(14)-C(15)	1.516(3)
C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900
C(15)-C(16)	1.519(3)
C(15)-H(15A)	0.9900
C(15)-H(15B)	0.9900
C(16)-C(17)	1.539(3)
C(16)-H(16A)	0.9900
C(16)-H(16B)	0.9900

 Table 3.
 Bond lengths [Å] and angles [°] for 14ub_sbj_sk1a_1_0ma.

C(17)-H(17A)	0.9900
C(17)-H(17B)	0.9900
C(18)-O(1)	1.422(3)
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
N(3)-H(1N)	0.96(3)
N(3)-H(2N)	0.87(3)
N(1)-C(1)-C(2)	124.16(16)
N(1)-C(1)-C(13)	115.07(16)
C(2)-C(1)-C(13)	120.78(15)
C(3)-C(2)-C(1)	117.59(16)
C(3)-C(2)-C(17)	122.09(16)
C(1)-C(2)-C(17)	120.32(16)
C(2)-C(3)-C(4)	118.52(16)
C(2)-C(3)-C(6)	123.21(15)
C(4)-C(3)-C(6)	118.26(15)
C(3)-C(4)-C(5)	120.15(16)
C(3)-C(4)-C(12)	121.39(16)
C(5)-C(4)-C(12)	118.45(15)
N(3)-C(5)-N(1)	116.53(16)
N(3)-C(5)-C(4)	122.72(16)
N(1)-C(5)-C(4)	120.75(15)
C(11)-C(6)-C(7)	118.47(17)
C(11)-C(6)-C(3)	120.06(17)
C(7)-C(6)-C(3)	121.46(16)
C(6)-C(7)-C(8)	121.38(18)
C(6)-C(7)-H(7)	119.3
C(8)-C(7)-H(7)	119.3
C(9)-C(8)-C(7)	119.11(19)
C(9)-C(8)-H(8)	120.4
C(7)-C(8)-H(8)	120.4
O(1)-C(9)-C(10)	116.30(19)
O(1)-C(9)-C(8)	123.8(2)
C(10)-C(9)-C(8)	119.92(18)
C(9)-C(10)-C(11)	120.47(19)

C(9)-C(10)-H(10)	119.8
С(11)-С(10)-Н(10)	119.8
C(6)-C(11)-C(10)	120.62(19)
C(6)-C(11)-H(11)	119.7
С(10)-С(11)-Н(11)	119.7
N(2)-C(12)-C(4)	176.6(2)
C(1)-C(13)-C(14)	113.98(17)
С(1)-С(13)-Н(13А)	108.8
С(14)-С(13)-Н(13А)	108.8
С(1)-С(13)-Н(13В)	108.8
C(14)-C(13)-H(13B)	108.8
H(13A)-C(13)-H(13B)	107.7
C(15)-C(14)-C(13)	114.98(18)
C(15)-C(14)-H(14A)	108.5
C(13)-C(14)-H(14A)	108.5
C(15)-C(14)-H(14B)	108.5
C(13)-C(14)-H(14B)	108.5
H(14A)-C(14)-H(14B)	107.5
C(14)-C(15)-C(16)	114.93(17)
C(14)-C(15)-H(15A)	108.5
C(16)-C(15)-H(15A)	108.5
C(14)-C(15)-H(15B)	108.5
C(16)-C(15)-H(15B)	108.5
H(15A)-C(15)-H(15B)	107.5
C(15)-C(16)-C(17)	113.80(17)
C(15)-C(16)-H(16A)	108.8
C(17)-C(16)-H(16A)	108.8
C(15)-C(16)-H(16B)	108.8
C(17)-C(16)-H(16B)	108.8
H(16A)-C(16)-H(16B)	107.7
C(2)-C(17)-C(16)	113.00(16)
C(2)-C(17)-H(17A)	109.0
C(16)-C(17)-H(17A)	109.0
C(2)-C(17)-H(17B)	109.0
C(16)-C(17)-H(17B)	109.0
H(17A)-C(17)-H(17B)	107.8
O(1)-C(18)-H(18A)	109.5

O(1)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
O(1)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(1)-N(1)-C(5)	118.82(15)
C(5)-N(3)-H(1N)	119.1(16)
C(5)-N(3)-H(2N)	123.6(18)
H(1N)-N(3)-H(2N)	117(2)
C(9)-O(1)-C(18)	117.25(18)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	28(1)	35(1)	30(1)	0(1)	-2(1)	-3(1)
C(2)	27(1)	35(1)	31(1)	0(1)	-3(1)	-2(1)
C(3)	26(1)	35(1)	31(1)	-1(1)	-1(1)	-1(1)
C(4)	26(1)	39(1)	28(1)	-2(1)	-2(1)	-3(1)
C(5)	25(1)	38(1)	30(1)	0(1)	-2(1)	-2(1)
C(6)	24(1)	41(1)	29(1)	-2(1)	-3(1)	1(1)
C(7)	32(1)	38(1)	36(1)	-1(1)	3(1)	5(1)
C(8)	34(1)	46(1)	37(1)	5(1)	4(1)	6(1)
C(9)	32(1)	57(1)	29(1)	-3(1)	1(1)	11(1)
C(10)	41(1)	44(1)	44(1)	-12(1)	-3(1)	3(1)
C(11)	32(1)	43(1)	45(1)	-7(1)	-1(1)	-5(1)
C(12)	26(1)	58(1)	33(1)	-3(1)	2(1)	-5(1)
C(13)	34(1)	49(1)	29(1)	-4(1)	0(1)	-9(1)
C(14)	44(1)	48(1)	45(1)	-11(1)	-5(1)	-6(1)
C(15)	46(1)	46(1)	45(1)	-3(1)	-8(1)	-14(1)
C(16)	35(1)	56(1)	41(1)	2(1)	-5(1)	-14(1)
C(17)	25(1)	51(1)	34(1)	-1(1)	-4(1)	0(1)
C(18)	72(2)	74(2)	48(1)	16(1)	26(1)	29(1)
N(1)	26(1)	42(1)	29(1)	-3(1)	0(1)	-3(1)
N(2)	36(1)	105(2)	35(1)	-12(1)	-4(1)	-12(1)
N(3)	24(1)	67(1)	36(1)	-10(1)	-1(1)	-7(1)
O(1)	55(1)	64(1)	40(1)	-2(1)	15(1)	16(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for 14ub_sbj_sk1a_1_0ma. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	Х	у	Z	U(eq)
H(7)	6535	2448	4513	43
H(8)	5604	2779	5495	46
H(10)	6215	6431	5474	52
H(11)	7173	6081	4521	48
H(13A)	8303	3184	1511	45
H(13B)	7364	3723	1608	45
H(14A)	7498	1519	1228	55
H(14B)	7747	1243	2062	55
H(15A)	6306	811	1843	55
H(15B)	6151	2219	1600	55
H(16A)	6597	1487	3056	53
H(16B)	5653	1832	2805	53
H(17A)	6271	3912	2485	44
H(17B)	6059	3630	3328	44
H(18A)	4523	4253	6900	97
H(18B)	5286	3335	6696	97
H(18C)	4511	3515	6138	97
H(1N)	10278(17)	4080(20)	3115(15)	52(7)
H(2N)	10108(17)	4500(20)	3920(16)	54(7)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³)for 14ub_sbj_sk1a_1_0ma.

N(1)-C(1)-C(2)-C(3)	0.7(3)
C(13)-C(1)-C(2)-C(3)	-178.86(17)
N(1)-C(1)-C(2)-C(17)	-178.63(17)
C(13)-C(1)-C(2)-C(17)	1.8(3)
C(1)-C(2)-C(3)-C(4)	-0.3(3)
C(17)-C(2)-C(3)-C(4)	178.98(17)
C(1)-C(2)-C(3)-C(6)	178.66(17)
C(17)-C(2)-C(3)-C(6)	-2.0(3)
C(2)-C(3)-C(4)-C(5)	0.4(3)
C(6)-C(3)-C(4)-C(5)	-178.63(16)
C(2)-C(3)-C(4)-C(12)	-178.50(18)
C(6)-C(3)-C(4)-C(12)	2.4(3)
C(3)-C(4)-C(5)-N(3)	179.68(18)
C(12)-C(4)-C(5)-N(3)	-1.4(3)
C(3)-C(4)-C(5)-N(1)	-0.8(3)
C(12)-C(4)-C(5)-N(1)	178.11(18)
C(2)-C(3)-C(6)-C(11)	-115.1(2)
C(4)-C(3)-C(6)-C(11)	63.9(2)
C(2)-C(3)-C(6)-C(7)	65.8(2)
C(4)-C(3)-C(6)-C(7)	-115.2(2)
C(11)-C(6)-C(7)-C(8)	-1.4(3)
C(3)-C(6)-C(7)-C(8)	177.75(17)
C(6)-C(7)-C(8)-C(9)	0.9(3)
C(7)-C(8)-C(9)-O(1)	-179.23(18)
C(7)-C(8)-C(9)-C(10)	0.7(3)
O(1)-C(9)-C(10)-C(11)	178.15(18)
C(8)-C(9)-C(10)-C(11)	-1.8(3)
C(7)-C(6)-C(11)-C(10)	0.3(3)
C(3)-C(6)-C(11)-C(10)	-178.85(18)
C(9)-C(10)-C(11)-C(6)	1.3(3)
N(1)-C(1)-C(13)-C(14)	114.29(19)
C(2)-C(1)-C(13)-C(14)	-66.1(2)
C(1)-C(13)-C(14)-C(15)	79.1(2)
C(13)-C(14)-C(15)-C(16)	-61.4(3)
C(14)-C(15)-C(16)-C(17)	63.8(3)

 Table 6.
 Torsion angles [°] for 14ub_sbj_sk1a_1_0ma.

C(3)-C(2)-C(17)-C(16)	-114.2(2)
C(1)-C(2)-C(17)-C(16)	65.1(2)
C(15)-C(16)-C(17)-C(2)	-82.9(2)
C(2)-C(1)-N(1)-C(5)	-1.1(3)
C(13)-C(1)-N(1)-C(5)	178.48(16)
N(3)-C(5)-N(1)-C(1)	-179.33(17)
C(4)-C(5)-N(1)-C(1)	1.2(3)
C(10)-C(9)-O(1)-C(18)	-176.5(2)
C(8)-C(9)-O(1)-C(18)	3.5(3)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for $14ub_sbj_sk1a_1_0ma$ [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)Syr	nmetry operations
N(3)—H(1N)N(1)	0.96(3)	2.14(3)	3.090(2)	177(2)	-x,y,1/2-z
N(3)—H(2N)N(2)	0.87(3)	2.19(3)	3.038(3)	163(3)	-x,1-y,-z