Electronic Supporting Information (ESI):

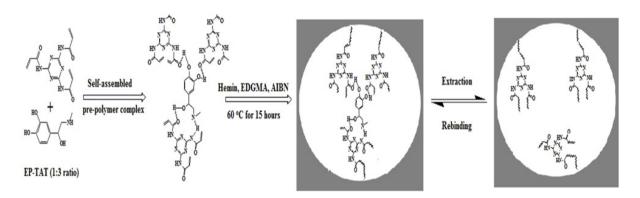
Electrochemical Detection of Epinephrine Using a Biomimic Made Up of Hemin Modified Molecularly Imprinted Microspheres

Kiran Kumar Tadi, a Ramani V. Motghare, a,* V. Ganeshb,c,*

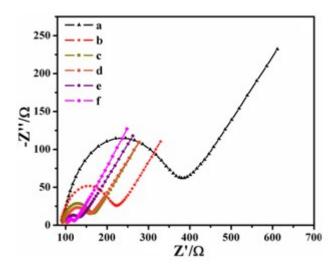
^a Chemistry Department, Visvesvaraya National Institute of Technology, Nagpur – 440010, India. Telephone: +91-712-2801603

^b Electrodics and Electrocatalysis (EEC) Division, CSIR – Central Electrochemical Research Institute (CSIR – CECRI), Karaikudi – 630003, Tamilnadu, India. Telephone: +91-4565-241242. Fax: +91-4565-227779.

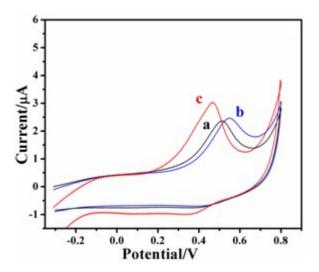
^cAcademy of Scientific and Innovatibe Research (AcSIR), New Delhi – 110025, India.


V. Ganesh; E-mail: <u>vganesh@cecri.res.in</u> (or) <u>ganelectro@gmail.com</u>

R. V. Mothgare; E-mail: rkkawadkar@chm.vnit.ac.in


^{*} To whom correspondence should be addressed

Figures


<u>Figure S1:</u> Chemical structures of template, epinephrine (EP) and trifunctional monomer, 2,4,6-trisacrylamido-1,3,5-triazine (TAT).

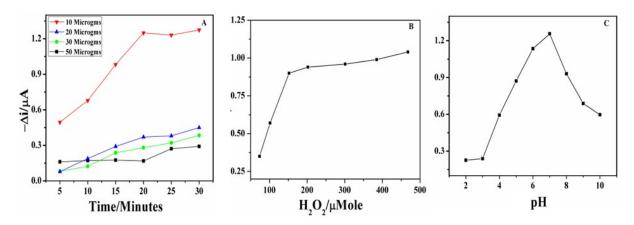

<u>Figure S2:</u> Schematic representation of the preparation of hemin modified EP imprinted polymer.

Figure S3: EIS of bare Au disc electrode (a), Au/chitosan/nafion/EP–MIP before extraction (b), Au/chitosan/nafion/EP–MIP after extraction of EP (c), Au/chitosan/nafion/EP–MIP/nafion before extraction (d), Au/chitosan/nafion/EP-MIP/nafion after extraction of EP (e), and Au/chitosan/nafion (f) coated electrodes respectively in 5 mmol L^{-1} [Fe(CN)₆]^{3-/4-} solution containing 0.1 M KCl as a supporting electrolyte.

<u>Figure S4:</u> CVs recorded at EP–MIP modified Au disc electrode in 0.1 mol L⁻¹ PBS (pH–7.0) blank solution (a), along with 200 μmol L⁻¹ H₂O₂ (b), and in presence of 10 μmol L⁻¹ EP (c).

<u>Figure S5:</u> Influence of (A) loading 10, 20, 30 and 50 μg of MIP microspheres, (B) concentration of H_2O_2 and (C) pH of the medium on the variation of reduction current. Electrolyte: 0.1 mol L⁻¹ PBS (pH–7.0) containing 200 μmol L⁻¹ H₂O₂ at 10 μmol L⁻¹ EP.

<u>Table–S1:</u>
Recovery studies of EP sensing in 25 times diluted human blood serum samples.

	Added	Found	Recovery
Samples	$(\mu mol L^{-1})$	(µmol L ⁻¹)	(%, n=3)
Serum Sample		ND	
	2.50	2.84	113.6 (± 3.16)
	4.97	5.40	$108.8 (\pm 4.35)$
	9.89	10.36	$104.75 (\pm 3.75)$