Electronic Supplementary Information

Light Triggered Radical Addition/Annulation of 2-Isocyanobiphenyls toward 6-Trifluoromethyl-Phenanthridines under Photocatalysts-free Conditions

Xiangyang Tang,^a Shuang Song,^a Cuibo Liu,^{*ab} Rongjiao Zhu,^a Bin Zhang^{*abc}

^a Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
^c The Key Lab of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
E-mail: bzhang@tju.edu.cn, chemliucuibo@163.com

Table of Contents

1. General information and materials2
2. Typical procedures for the synthesis of substrates
3. General procedure for light triggered radical addition/annulation of 2-isocyanobiphenyls
4. Procedure for the amplifying experiments
5. Procedure for the control experiments4
6. UV-visible absorption spectrum of CF ₃ SO ₂ Cl in DMAC4
7. Copies of NMR Spectra

1. General Information: Materials

All purchased reagents were used without further purification. Analytical thin layer chromatography was performed on 0.20 mm Qingdao Haiyang silica gel plates. Silica gel (200-300 mesh) (from Qingdao Haiyang Chem. Company, Ltd.) was used for flash chromatography.

Characterization

The reaction was irradiated with 300WXe arclamp (280-780 nm, CEL-HXF300/CEL-HXUV300, Beijing 10 Aulight Co. Ltd.). ¹H, ¹³C, ¹⁹F NMR were recorded on Varian Mercury Plus 400 instruments at 400 MHz (¹H NMR), 100 MHz (¹³C NMR), as well as 376 MHz (¹⁹F NMR). Chemical shifts were reported in parts per million (ppm) down field from internal Me₄Si and external CCl₃F, respectively. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), br (broad). Coupling constants were reported in hertz (Hz). HRMS were recorded on an Agilent Q-TOF spectrometer using the ESI method. IR spectras were recorded on an AVATAR 360 FT-IR spectrometer.

2. Typical procedure for the synthesis of substrates¹⁻²

Reference:

1. B. Zhang, C. Mück-Lichtenfeld, C. G. Daniliuc and A. Studer, Angew. Chem. Int. Ed., 2013, 52, 10792.

2. Q. L. Wang, X. C. Dong, T. B. Xiao and L. Zhou, Org. Lett., 2013, 15, 4846.

3. General procedure for light triggered radical addition/annulation of 2isocyanobiphenyls (the synthesis of 3e as example)

Compound **1e** (0.2 mmol, 51.1 mg), K_2HPO_4 (98%, 0.6 mmol, 106.6 mg), and DMAC (1.0 mL) were added to a dried 10 mL schlenk flask under air. Then, the schlenk tube was sealed well, and immersed in an ice bath maintaining for 5 min. After that, CF_3SO_2Cl (98%, 0.6 mmol, 103.2 mg) was added to the mixture via the microinjector. The schlenk tube was immediately moved to a distance of ca. 30 cm from the light source and the resulting solution was stirred at 0 °C under light irradiation for 6 h. After the completion of the reaction (by TLC), water (5.0 mL) was added to the reaction media and extracted with CH_2Cl_2 (3×10.0 mL). The combined organic layers were washed with brine, and dried over anhydrous MgSO₄. After removal of the solvent, the residue was purified by flash column chromatography on silica gel to give the desired product **3e**.

4. Procedure for the amplifying experiments

Compound **1g** (1.2 mmol, 256.4 mg), K_2HPO_4 (98%, 3.6 mmol, 639.6 mg), and DMAC (6.0 mL) were added to a dried 25 mL schlenk flask under air. Then, the schlenk tube was sealed well, and immersed in an ice bath maintaining for 5 min. After that, CF_3SO_2Cl (98%, 3.6 mmol, 619.2 mg) was added to the mixture via the microinjector. The schlenk tube was immediately moved to a distance of ca. 30 cm from the light source and the resulting solution was stirred at 0 °C under light irradiation for 6 h. After the completion of the reaction (by TLC), water (30.0 mL) was added to the reaction media and extracted with CH_2Cl_2 (3×30.0 mL). The combined organic layers were washed with brine, and dried over anhydrous MgSO₄. After removal of the solvent, the residue was purified by flash column chromatography on silica gel to give the desired product **3g** in 65% yields.

5. Procedure for the control experiments

The addition of TEMPO to the reaction system under standard conditions

Compound **1e** (0.2 mmol, 51.1 mg), K_2HPO_4 (98%, 0.6 mmol, 106.6 mg), TEMPO (0.4mmol, 62.5mg), and DMAC (1.0 mL) were added to a dried 10 mL schlenk flask under air. Then, the schlenk tube was sealed well, and immersed in an ice bath maintaining for 5 min. After that, CF_3SO_2CI (98%, 0.6 mmol, 103.2 mg) was added to the mixture via the microinjector. The schlenk tube was immediately moved to a distance of ca. 30 cm from the light source and the resulting solution was stirred at 0 °C under light irradiation for 6 h. ¹⁹F NMR analysis of this reaction mixture showed that the product **3e** was not detected, which supported that a radical pathway was involved in this arylation/trifluoromethylation of 2-aryl isonitriles.

6. UV-visible absorption spectrum of CF₃SO₂Cl in DMAC

Fig. S1 UV–visible absorption spectrum of CF_3SO_2Cl in DMAC In order to determine the effective wavelength range, the UV-visible absorption spectrum of CF_3SO_2Cl in DMAC was conducted (Fig. S1). This result revealed that the optimal wavelength absorption range of CF_3SO_2Cl was approximately between 270-350 nm, and the rest section of 350-780 nm that our light source generated was useless.

7. Copies of NMR Spectra

6-(trifluoromethyl)phenanthridine (3a)

¹**H NMR** (400 MHz, CDCl₃) [ppm] δ 8.75 (d, *J* = 8.3 Hz, 1H), 8.69 – 8.61 (m, 1H), 8.42 (d, *J* = 8.4 Hz, 1H), 8.36 – 8.29 (m, 1H), 7.97 (t, *J* = 7.6 Hz, 1H), 7.83 (dq, *J* = 15.5, 7.6 Hz, 3H); ¹⁹**F NMR** (376 MHz, CDCl₃) [ppm] δ -63.46 (s, 3F); ¹³**C NMR** (100 MHz, CDCl₃) [ppm] δ 146.6 (q, *J* = 33.0 Hz), 141.8 (s), 134.0 (s), 131.4 (s), 131.2 (s), 129.4 (s), 129.2 (s), 128.1 (s), 126.0 (q, *J* = 3.0 Hz), 125.2 (s), 122.6 (s), 122.1 (s), 121.9 (q, *J* = 275.0 Hz), 121.8; **IR** (KBr) v (cm⁻¹): 3077, 1728, 1525, 1378, 1251, 1171, 1118, 1020, 969, 797, 757, 718; **HRMS** (ESI) found: *m/z* 248.0679 [M+H]⁺; calcd. for C₁₄H₈F₃N+H 248.0687.

8-(tert-butyl)-6-(trifluoromethyl)phenanthridine (3b)

¹**H NMR** (400 MHz, CDCl₃) [ppm] δ 8.66 (d, *J* = 8.8 Hz, 1H), 8.64 – 8.58 (m, 1H), 8.38 (s, 1H), 8.33 – 8.27 (m, 1H), 8.04 (d, *J* = 8.8 Hz, 1H), 7.81 (dd, *J* = 9.1, 4.8 Hz, 2H), 1.51 (s, 9H); ¹⁹**F NMR** (376 MHz, CDCl₃) [ppm] δ -63.46 (s, 3F); ¹³**C NMR** (100 MHz, CDCl₃) [ppm] δ 151.3 (s), 146.6 (q, *J* = 32.0 Hz), 141.6 (s), 131.9 (s), 131.0 (s), 129.9 (s), 129.1 (s), 128.9 (s), 125.1 (s), 122.3 (s), 122.1 (q, *J* = 276.0 Hz), 122.0 (s), 121.9 (s), 121.4 (q, *J* = 3.0 Hz), 35.2 (s), 31.2 (s); **IR** (KBr) v (cm⁻¹): 3064, 2966, 1727, 1619, 1580, 1465, 1365, 1335, 1183, 1132, 986, 836; **HRMS** (ESI) found: *m/z* 304.1305 [M+H]⁺; calcd. for C₁₈H₁₆F₃N+H 304.1313.

Page - 8 - of 42

8-methoxy-6-(trifluoromethyl)phenanthridine (3c)

¹**H NMR** (400 MHz, CDCl₃) [ppm] δ 8.53 (d, J = 9.1 Hz, 1H), 8.46 (dd, J = 5.9, 3.4 Hz, 1H), 8.25 (dd, J = 5.9, 3.6 Hz, 1H), 7.74 (dd, J = 6.2, 3.4 Hz, 2H), 7.66 (s, 1H), 7.51 (d, J = 9.1 Hz, 1H), 4.00 (s, 3H); ¹⁹**F NMR** (376 MHz, CDCl₃) [ppm] δ -64.07 (s, 3F); ¹³**C NMR** (100 MHz, CDCl₃) [ppm] δ 159.0 (s), 145.5 (q, J = 33.0 Hz), 141.0 (s), 131.0 (s), 129.2 (s), 128.4 (s), 128.3 (s), 125.2 (s), 124.1 (s), 123.1 (s), 122.4 (s), 122.1 (q, J = 275.0 Hz), 121.5 (s), 105.5 (q, J = 3.0 Hz), 55.5 (s); **IR** (KBr) v (cm⁻¹): 3072, 2922, 2852, 1726, 1619, 1580, 1487, 1461, 1390, 1335, 1258, 1224, 1172, 1134, 1036, 988, 893, 834, 764, 734; **HRMS** (ESI) found: *m/z* 278.0789 [M+H]⁺; calcd. for C₁₅H₁₀F₃NO+H 278.0792.

8-methyl-6-(trifluoromethyl)phenanthridine (3d)

¹**H NMR** (400 MHz, CDCl₃) [ppm] δ 8.58 (dd, J = 9.1, 5.0 Hz, 2H), 8.32 – 8.26 (m, 1H), 8.15 (s, 1H), 7.83 – 7.71 (m, 3H), 2.64 (s, 3H); ¹⁹**F NMR** (376 MHz, CDCl₃) [ppm] δ -63.47 (s, 3F); ¹³**C NMR** (100 MHz, CDCl₃) [ppm] δ 146.2 (q, J = 33.0 Hz), 141.5 (s), 138.2 (s), 133.2 (s), 131.9 (s), 131.0 (s), 129.1 (s), 128.9 (s), 125.2 (q, J = 3.0 Hz), 125.2 (s), 122.4 (s), 122.0 (q, J = 275.0 Hz), 122.0 (s), 121.9 (s), 21.9 (s); **IR** (KBr) v (cm⁻¹): 3029, 2921, 2852, 1729, 1576, 1532, 1461, 1385, 1332, 1259, 1166, 1133, 985, 791; **HRMS** (ESI) found: m/z 262.0843 [M+H]⁺; calcd. for C₁₅H₁₀F₃N+H 262.0843.

8-phenyl-6-(trifluoromethyl)phenanthridine (3e)

¹**H NMR** (400 MHz, CDCl₃) [ppm] δ 8.78 (d, J = 8.7 Hz, 1H), 8.68 – 8.61 (m, 1H), 8.58 (s, 1H), 8.37 – 8.30 (m, 1H), 8.19 (d, J = 8.5 Hz, 1H), 7.88 – 7.80 (m, 2H), 7.78 (d, J = 7.6 Hz, 2H), 7.58 (t, J = 7.5 Hz, 2H), 7.50 (d, J = 2.7 Hz, 1H); ¹⁹**F NMR** (376 MHz, CDCl₃) [ppm] δ -63.33 (s, 3F); ¹³**C NMR** (100 MHz, CDCl₃) [ppm] δ 146.6 (q, J = 33.5 Hz), 141.7 (s), 141.0 (s), 139.8 (s), 133.0 (s), 131.2 (s), 130.7 (s), 129.3 (s), 129.2 (s), 128.2 (s), 127.5 (s), 125.0 (s), 123.8 (q, J = 3.0 Hz), 123.1 (s), 122.2 (s), 122.10 (s), 122.0 (q, J = 275.0 Hz); **IR** (KBr) v (cm⁻¹): 3036, 1728, 1579, 1465, 1386, 1277, 1181, 1125, 1075, 1032, 977, 864, 799, 760, 734; **HRMS** (ESI) found: m/z 324.0998 [M+H]⁺; calcd. for C₂₀H₁₂F₃N+H 324.1000.

8-fluoro-6-(trifluoromethyl)phenanthridine (3f)

¹**H NMR** (400 MHz, CDCl₃) [ppm] δ 8.61 (t, J = 9.1 Hz, 1H), 8.53 (t, J = 6.5 Hz, 1H), 8.34 (s, 1H), 8.29 (dd, J = 6.2, 2.4 Hz, 1H), 7.90 – 7.77 (m, 3H); ¹⁹**F NMR** (376 MHz, CDCl₃) [ppm] δ -64.01 (s, 3F), -109.89 to -109.95 (m, 1F); ¹³**C NMR** (100 MHz, CDCl₃) [ppm] δ 161.5 (d, J = 249.0 Hz), 145.7 (q, J = 33.0 Hz), 141.4 (s), 131.2 (s), 130.7 (d, J = 2.0 Hz), 129.6 (s), 129.2 (s), 125.1 (d, J = 9.0 Hz), 124.7 (s), 122.8 (d, J = 9.0 Hz), 121.8 (s), 121.7 (q, J = 275.0 Hz), 120.8 (d, J = 24.0 Hz), 110.7 (dq, J = 23.2 Hz, 3.5 Hz); **IR** (KBr) v (cm⁻¹): 1623, 1574, 1533, 1483, 1431, 1385, 1336, 1285, 1209, 1180, 1123, 998, 901, 876, 826, 734; **HRMS** (ESI) found: m/z 266.0588 [M+H]⁺; calcd. for C₁₄H₇F₄N+H 266.0593.

3g

8-chloro-6-(trifluoromethyl)phenanthridine (3g)

¹**H NMR** (400 MHz, CDCl₃) [ppm] δ 8.61 (t, J = 9.1 Hz, 1H), 8.53 (t, J = 6.5 Hz, 1H), 8.33 (d, J = 1.2 Hz, 1H), 8.29 (dd, J = 6.2, 2.4 Hz, 1H), 7.90 – 7.76 (m, 3H); ¹⁹**F NMR** (376 MHz, CDCl₃) [ppm] δ - 63.61 (s, 3F); ¹³**C NMR** (100 MHz, CDCl₃) [ppm] δ 145.4 (q, J = 34.0 Hz), 141.7 (s), 134.3 (s), 132.3 (d, J = 2.0 Hz), 132.0 (d, J = 1.0 Hz), 131.3 (d, J = 1.0 Hz), 129.7 (s), 125.2 (d, J = 2.0 Hz), 125.2 (q, J = 4.0 Hz), 124.5 (d, J = 2.0 Hz), 124.2 (d, J = 2.0 Hz), 122.5 (d, J = 2.0 Hz), 121.9, (d, J = 2.0 Hz), 121.6 (q, J = 276.0 Hz); **IR** (KBr) v (cm⁻¹): 3062, 1726, 1574, 1521, 1470, 1409, 1378, 1336, 1252, 1180, 982, 864; **HRMS** (ESI) found: m/z 282.0287 [M+H]⁺; calcd. for C₁₄H₇ClF₃N+H 282.0297.

Page - 18 - of 42

1-(6-(trifluoromethyl)phenanthridin-8-yl)ethan-1-one (3h)

¹**H NMR** (400 MHz, CDCl₃) [ppm] δ 8.96 (s, 1H), 8.80 (d, J = 8.8 Hz, 1H), 8.67 (d, J = 7.9 Hz, 1H), 8.51 (dd, J = 8.7, 1.2 Hz, 1H), 8.35 (d, J = 8.1 Hz, 1H), 7.90 (tt, J = 13.8, 7.1 Hz, 2H), 2.82 (s, 3H); ¹⁹**F NMR** (376 MHz, CDCl₃) [ppm] δ -63.07 (s, 3F); ¹³**C NMR** (100 MHz, CDCl₃) [ppm] δ 196.8 (s), 146.6 (q, J = 34.0 Hz), 142.6 (s), 136.8 (s), 136.0 (s), 131.3 (s), 130.6 (s), 129.7 (d, J = 1.0 Hz), 127.0 (q, J = 4.0 Hz), 124.4 (s), 123.2(s), 122.7 (s), 121.8 (q, J = 276.0 Hz), 121.3 (s), 26.6 (s); **IR** (KBr) v (cm⁻¹): 1728, 1685, 1609, 1415, 1358, 1296, 1254, 1174, 1124, 968, 836, 732; **HRMS** (ESI) found: m/z 290.0782 [M+H]⁺; calcd. for C₁₆H₁₀F₃NO+H 290.0792.

6-(trifluoromethyl)phenanthridine-8-carbonitrile (3i)

¹**H NMR** (400 MHz, CDCl₃) [ppm] δ 8.82 (d, J = 8.7 Hz, 1H), 8.71 (s, 1H), 8.63 (d, J = 7.9 Hz, 1H), 8.35 (d, J = 7.7 Hz, 1H), 8.11 (dd, J = 8.7, 1.1 Hz, 1H), 7.98 – 7.86 (m, 2H); ¹⁹**F NMR** (376 MHz, CDCl₃) [ppm] δ -63.25 (s, 3F); ¹³**C NMR** (100 MHz, CDCl₃) [ppm] δ 145.8 (q, J = 34.0 Hz), 142.6 (s), 136.3 (s), 132.5 (s), 131.5 (s), 131.2 (q, J = 4.0 Hz), 131.2 (s), 130.2 (s), 124.0 (s), 123.8 (s), 122.6 (s), 121.4 (q, J = 275.0 Hz), 121.2 (s), 118.0 (s), 112.0 (s); **IR** (KBr) v (cm⁻¹): 3085, 2229, 1729, 1613, 1527, 1466, 1414, 1378, 1335, 1258, 1176, 1130, 992, 838; **HRMS** (ESI) found: m/z 273.0636 [M+H]⁺; calcd. for C₁₅H₇F₃N₂+H 273.0639.

7,9-dimethyl-6-(trifluoromethyl)phenanthridine (3j)

¹**H NMR** (400 MHz, CDCl₃) [ppm] δ 8.58 (d, *J* = 8.1 Hz, 1H), 8.40 (s, 1H), 8.23 (d, *J* = 7.7 Hz, 1H), 7.82 – 7.71 (m, 2H), 7.45 (s, 1H), 2.91 (s, 3H), 2.61 (s, 3H); ¹⁹**F NMR** (376 MHz, CDCl₃) [ppm] δ -59.84 (s, 3F); ¹³**C NMR** (100 MHz, CDCl₃) [ppm] δ 145.0 (q, *J* = 33.0 Hz), 140.9 (s), 140.8 (s), 135.9 (s), 135.6 (s), 134.5 (s), 130.6 (s), 128.9 (s), 128.9 (s), 125.2 (s), 122.3 (s), 122.1 (q, *J* = 275.0 Hz), 120.5 (s), 120.5 (s), 23.3 (q, *J* = 9.0 Hz), 21.8 (s); **IR** (KBr) v (cm⁻¹): 2917, 1725, 1615, 1576, 1513, 1466, 1379, 1350, 1241, 1160, 1119, 960, 849, 768; **HRMS** (ESI) found: *m/z* 276.0998 [M+H]⁺; calcd. for C₁₆H₁₂F₃N+H 276.1000.

Page - 24 - of 42

7-methyl-6-(trifluoromethyl)phenanthridine (3k)

¹**H NMR** (400 MHz, CDCl₃) [ppm] δ 8.64 (dd, J = 13.3, 8.7 Hz, 2H), 8.30 – 8.24 (m, 1H), 7.84 – 7.76 (m, 3H), 7.65 (d, J = 7.2 Hz, 1H), 2.96 (s, 3H); ¹⁹**F NMR** (376 MHz, CDCl₃) [ppm] δ -59.80 (s, 3F); ¹³**C NMR** (100 MHz, CDCl₃) [ppm] δ 144.8 (q, J = 33.0 Hz), 140.7 (s), 136.0 (s), 135.6 (s), 132.7 (s), 130.9 (s), 130.7 (s), 130.5 (s), 129.2 (s), 129.1 (s), 128.9 (s), 122.3 (s), 122.0 (q, J = 273.0 Hz), 120.8 (s), 29.72 (s); **IR** (KBr) v (cm⁻¹): 2958, 2920, 1726, 1600, 1524, 1460, 1381, 1346, 1260, 1176, 1130, 964, 803; **HRMS** (ESI) found: m/z 262.0838 [M+H]⁺; calcd. for C₁₅H₁₀F₃N+H 262.0843.

9-methyl-6-(trifluoromethyl)phenanthridine(3k')

¹**H NMR** (400 MHz, CDCl₃) [ppm] δ 8.57 (d, J = 7.7 Hz, 1H), 8.44 (s, 1H), 8.31 – 8.24 (m, 2H), 7.82 – 7.76 (m, 2H), 7.59 – 7.56 (m, 1H), 2.67 (s, 3H); ¹⁹**F NMR** (376 MHz, CDCl₃) [ppm] δ -63.48 (s, 3F); ¹³**C NMR** (100 MHz, CDCl₃) [ppm] δ 146.4 (q, J = 33.0 Hz), 142.03 (s), 134.1 (s), 131.0 (s), 130.9 (s), 129.8 (s), 129.1 (s), 128.9 (s), 128.8 (s), 125.7 (q, J = 4.0 Hz), 122.1 (s), 122.0 (q, J = 275.0 Hz), 122.0 (s), 119.9 (s), 22.3 (s); **IR** (KBr) v (cm⁻¹): 2960, 2927, 1726, 1620, 1518, 1463, 1379, 1285, 1249, 1119, 968, 874, 757, 731; **HRMS** (ESI) found: m/z 262.0838 [M+H]⁺; calcd. for C₁₅H₁₀F₃N+H 262.0843.

H₃C N CF₃

10-methyl-6-(trifluoromethyl)phenanthridine (3l)

¹**H NMR** (400 MHz, CDCl₃) [ppm] δ 8.91 (d, J = 8.2 Hz, 1H), 8.36 (t, J = 7.7 Hz, 2H), 7.83 (dd, J = 16.6, 8.6 Hz, 3H), 7.71 (t, J = 7.8 Hz, 1H), 3.20 (s, 3H); ¹⁹**F NMR** (376 MHz, CDCl₃) [ppm] δ -62.98 (s, 3F); ¹³**C NMR** (100 MHz, CDCl₃) [ppm] δ 147.1 (q, J = 32.5 Hz), 142.9 (s), 135.8 (s), 135.6 (s), 133.6 (s), 131.5 (s), 128.5 (s), 128.4 (s), 127.4 (s), 126.6 (s), 126.5 (s), 124.4 (q, J = 4.0 Hz), 123.2 (s), 122.1 (q, J = 275.0 Hz), 27.0 (s); **IR** (KBr) v (cm⁻¹): 2920, 2852, 1729, 1587, 1529, 1459, 1376, 1260, 1180, 1114, 1052, 802, 759, 722; **HRMS** (ESI) found: m/z 262.0838 [M+H]⁺; calcd. for C₁₅H₁₀F₃N+H 262.0843.

10-chloro-6-(trifluoromethyl)phenanthridine (3m)

¹**H NMR** (400 MHz, CDCl₃) [ppm] δ 9.88 (d, J = 8.4 Hz, 1H), 8.37 (dd, J = 17.0, 8.0 Hz, 2H), 8.03 (d, J = 7.6 Hz, 1H), 7.86 (dt, J = 14.5, 7.0 Hz, 2H), 7.70 (t, J = 8.1 Hz, 1H); ¹⁹**F NMR** (376 MHz, CDCl₃) [ppm] δ -63.02 (s, 3F); ¹³**C NMR** (100 MHz, CDCl₃) [ppm] δ 146.3 (q, J = 32.0 Hz), 142.8 (s), 135.2 (s), 131.9 (s), 131.4 (s), 131.0 (s), 130.9 (s), 129.7 (s), 128.8 (s), 127.8 (s), 126.4 (s), 125.2 (q, J = 4.0 Hz), 124.3 (s), 121.8 (q, J = 276.0 Hz); **IR** (KBr) v (cm⁻¹): 2921, 2853, 1726, 1593, 1523, 1465, 1373, 1258, 1181, 1108, 804, 755, 720; **HRMS** (ESI) found: m/z 282.0295 [M+H]⁺; calcd. for C₁₄H₇ClF₃N+H 282.0297.

6-(trifluoromethyl)-[1,3]dioxolo[4,5-j]phenanthridine (3n)

¹**H NMR** (400 MHz, DMSO) [ppm] δ 8.82 – 8.72 (m, 1H), 8.45 (s, 1H), 8.15 (dd, *J* = 6.3, 3.2 Hz, 1H), 7.86 – 7.77 (m, 2H), 7.55 (d, *J* = 1.7 Hz, 1H), 6.34 (s, 2H); ¹⁹**F NMR** (376 MHz, DMSO) [ppm] δ -62.83 (s, 3F); ¹³**C NMR** (100 MHz, DMSO) [ppm] δ 152.5 (s), 149.5 (s), 145.4 (q, *J* = 34.0 Hz), 141.2 (s), 132.6 (s), 131.9 (s), 130.6 (s), 129.7 (s), 129.6 (s), 129.1 (s), 125.5 (s), 123.5 (s), 103.4 (s), 101.8 (q, *J* = 4.0 Hz), 101.6 (s); **IR** (KBr) v (cm⁻¹): 2926, 1651, 1507, 1464, 1264, 1188, 1111, 1028, 1003, 824, 763, 732, 615; **HRMS** (ESI) found: *m/z* 292.0579 [M+H]⁺; calcd. for C₁₅H₈F₃NO₂+H 292.0585.

N CF3

5-(trifluoromethyl)benzo[i]phenanthridine (30)

¹**H NMR** (400 MHz, CDCl₃) [ppm] δ 8.87 (d, J = 8.2 Hz, 1H), 8.72 – 8.61 (m, 2H), 8.36 (d, J = 8.1 Hz, 1H), 8.24 (dd, J = 9.0, 2.0 Hz, 1H), 8.04 (d, J = 7.3 Hz, 1H), 7.93 – 7.81 (m, 2H), 7.75 (p, J = 6.8 Hz, 2H); ¹⁹**F NMR** (376 MHz, CDCl₃) [ppm] δ -60.10 (s, 3F); ¹³**C NMR** (100 MHz, CDCl₃) [ppm] δ 144.4 (q, J = 33.0 Hz), 142.5 (s), 135.2 (s), 133.1 (s), 132.9 (s), 130.5 (s), 129.6 (s), 129.1 (s), 128.5 (s), 128.4 (s), 127.7 (q, J = 8.0 Hz), 127.5 (s), 127.3 (s), 124.8 (s), 122.6 (q, J = 274.0 Hz), 122.6 (s), 120.0 (s), 119.7 (s); **IR** (KBr) v (cm⁻¹): 3060, 1724, 1615, 1574, 1517, 1465, 1386, 1277, 1180, 1124, 1086, 945, 828, 801, 760; **HRMS** (ESI) found: m/z 298.0838 [M+H]⁺; calcd. for C₁₈H₁₀F₃N+H 298.0843.

5-(trifluoromethyl)dibenzo[i,k]phenanthridine (3p)

¹**H NMR** (400 MHz, CDCl₃) [ppm] δ 8.78 – 8.68 (m, 3H), 8.64 (d, *J* = 8.0 Hz, 1H), 8.47 (d, *J* = 8.1 Hz, 1H), 8.37 (d, *J* = 8.3 Hz, 1H), 7.84 (t, *J* = 7.6 Hz, 2H), 7.79 – 7.66 (m, 4H); ¹⁹**F NMR** (376 MHz, CDCl₃) [ppm] δ -59.36 (s, 3F); ¹³**C NMR** (100 MHz, CDCl₃) [ppm] δ 144.3 (s), 143.9 (q, *J* = 33.0 Hz), 136.7 (s), 132.7 (s), 130.3 (s), 129.8 (s), 129.5 (s), 129.4 (s), 129.2 (s), 128.7 (q, *J* = 6.0 Hz), 128.4 (s), 128.2 (s), 127.6 (s), 127.4 (s), 127.3 (s), 127.3 (s), 127.2 (s), 124.0 (s), 124.0 (s), 123.3 (s), 122.5 (q, *J* = 275.0 Hz), 120.6 (s); **IR** (KBr) v (cm⁻¹): 3072, 1726, 1607, 1562, 1490, 1459, 1357, 1286, 1183, 1129, 1080, 763, 729; **HRMS** (ESI) found: *m/z* 348.0995 [M+H]⁺; calcd. for C₂₂H₁₂F₃N+H 348.1000.

N CF₃

4-(trifluoromethyl)thieno[3,2-c]quinoline (3q)

¹**H NMR** (400 MHz, CDCl₃) [ppm] δ 8.36 (d, J = 8.0 Hz, 1H), 8.22 (d, J = 8.1 Hz, 1H), 7.82 (dd, J = 8.9, 5.3 Hz, 2H), 7.77 (t, J = 7.3 Hz, 1H), 7.72 (d, J = 5.5 Hz, 1H); ¹⁹**F NMR** (376 MHz, CDCl₃) [ppm] δ -65.75 (s, 3F); ¹³**C NMR** (100 MHz, CDCl₃) [ppm] δ 147.8 (s), 142.9 (q, J = 35.0 Hz), 141.9 (s), 131.1 (s), 129.4 (s), 129.1 (s), 129.0 (s), 127.5 (s), 125.1 (s), 123.2 (s), 123.1 (q, J = 2.0 Hz), 121.8 (q, J = 273.0 Hz); **IR** (KBr) v (cm⁻¹): 3758, 3654, 1721, 1556, 1462, 1376, 1337, 1276, 1185, 1129, 1059, 946, 874, 758; **HRMS** (ESI) found: m/z 254.0245 [M+H]⁺; calcd. for C₁₂H₆F₃NS+H 254.0251.

3r

2-methyl-6-(trifluoromethyl)phenanthridine (3r)

¹**H NMR** (400 MHz, CDCl₃) [ppm] δ 8.73 (d, *J* = 8.3 Hz, 1H), 8.48 – 8.36 (m, 2H), 8.21 (d, *J* = 8.4 Hz, 1H), 8.00 – 7.89 (m, 1H), 7.85 – 7.73 (m, 1H), 7.67 (d, *J* = 8.2 Hz, 1H), 2.69 (s, 3H); ¹⁹**F NMR** (376 MHz, CDCl₃) [ppm] δ -63.37 (s, 3F); ¹³**C NMR** (100 MHz, CDCl₃) [ppm] δ 145.6 (q, *J* = 32.0 Hz), 140.1 (s), 139.5 (s), 133.6 (s), 131.1 (s), 131.1 (s), 130.8 (s), 127.9 (s), 125.8 (q, *J* = 4.0 Hz), 125.0 (s), 122.5 (s), 122.0 (q, *J* = 275.0 Hz), 121.9 (s), 121.6 (s), 22.1 (s); **IR** (KBr) v (cm⁻¹): 3074, 2923, 2854, 1752, 1617, 1575, 1451, 1382, 1303, 1255, 1170, 1123, 972, 824, 770, 724, 682; **HRMS** (ESI) found: *m/z* 262.0838 [M+H]⁺; calcd. for C₁₅H₁₀F₃N+H 262.0843.

