

Electronic Supplementary Information (ESI)

Unanticipated favoured adsorption affinity of Th(IV) ions towards bidentate carboxylate functionalized carbon nanotubes (CNT-COOH) over tridentate diglycolamic acid functionalized CNT: Density functional theoretical investigation

A.K. Singha Deb, Sk. M. Ali*#, K.T. Shenoy

Chemical Engineering Division, Bhabha Atomic Research Centre, Mumbai, India -40085

Homi Bhabha National Institute, Mumbai, India -40085

*Corresponding author E-mail: musharaf@barc.gov.in

Table S1. Calculated structural parameters (in Å) of Th⁴⁺ ion with HCOOH, DGA and C₆₀-COOH at BP/SVP level of theory.

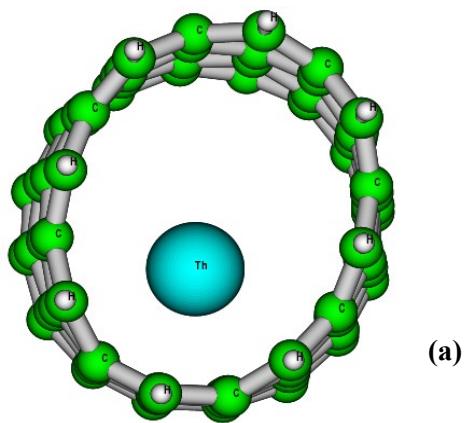
Species	M-O distance (Å)			
	amide O	carboxy O	ethereal O	alcoholic O
HCOOH		1.994		4.146
DGA	2.182	2.198	2.495	
C ₆₀ -COOH		2.078		2.357

Table S2. Calculated various molecular descriptors (eV) at B3LYP/TZVP level of theory.

	E _{HOMO}	E _{LUMO}	E _{LUMO} -E _{HOMO}	χ	η	ΔN(Th ⁴⁺)	ΔN(Th ⁴⁺ -(H ₂ O) ₈)
Th ⁴⁺	-56.23	-34.09	22.13	45.16	11.06		
Th ⁴⁺ -(H ₂ O) ₈	-25.46	-17.58	7.87	21.52	3.93		
CNT-DGA	-4.32	-3.91	0.41	4.11	0.205	1.820	2.101
CNT-COOH	-4.24	-3.83	0.40	4.03	0.200	1.824	2.111
C ₆₀ -COOH	-5.85	-4.14	1.70	4.99	0.85	1.684	1.725

Table S3. Calculated values of interaction energies (kcal/mol) at B3LYP/TZVP level of theory.

Various stoichiometric reaction	ΔE
CNT-DGA + Th ⁴⁺ = CNT-DGA-Th ⁴⁺	-875.61
CNT-COOH + Th ⁴⁺ = CNT-COOH-Th ⁴⁺	-792.84
C ₆₀ -COOH + Th ⁴⁺ = C ₆₀ -COOH-Th ⁴⁺	-627.06
HCOOH = Th ⁴⁺ = HCCOH-Th ⁴⁺	-292.65
HDGA + Th ⁴⁺ = HDGA-Th ⁴⁺	-581.46


Table S4. Comparison of bond distances in Å from Th⁴⁺ metal centre for complexes/system under consideration without nitrate at BP/SVP level of theory with and without dispersion-corrected DFT of Grimme's D3 scheme.

Bond	DFT-D				Without DFT-D			
	System of Th ⁴⁺ bonded with							
	CNT-Side Surface	CNT-Open End	CNT-COOH	CNT-DGA	CNT-Side Surface	CNT-Open End	CNT-COOH	CNT-DGA
Th-C* (CNT)	2.552	-	-	-	2.542	-	-	-
Th-H(CNTedge)	-	4.013	-	-	-	3.935	-	-
Th-O [#] (COOH)	-	-	2.265	-	-	-	2.265	-
Th-O [#] carbonyl(DGA)	-	-	-	2.192	-	-	-	2.205
Th-O _{ether} (DGA)	-	-	-	2.440	-	-	-	2.480

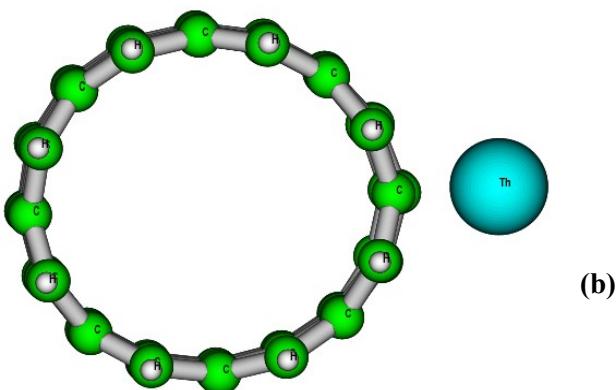
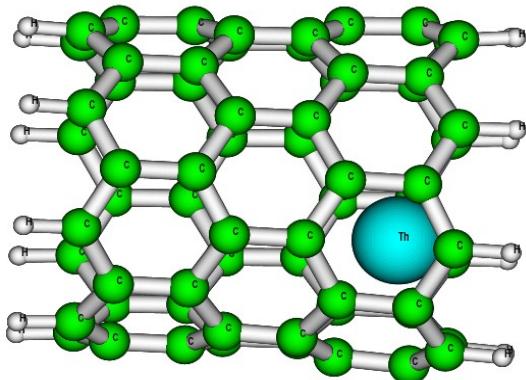
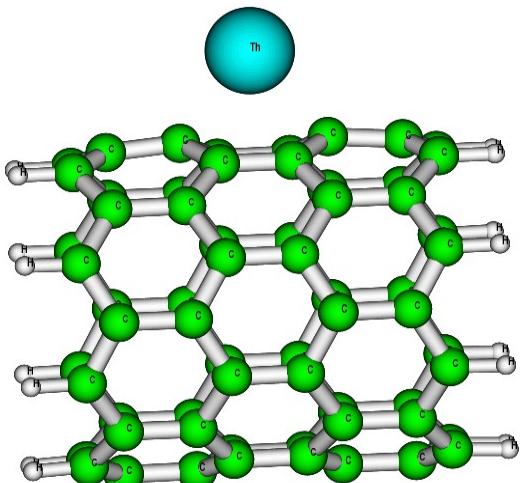
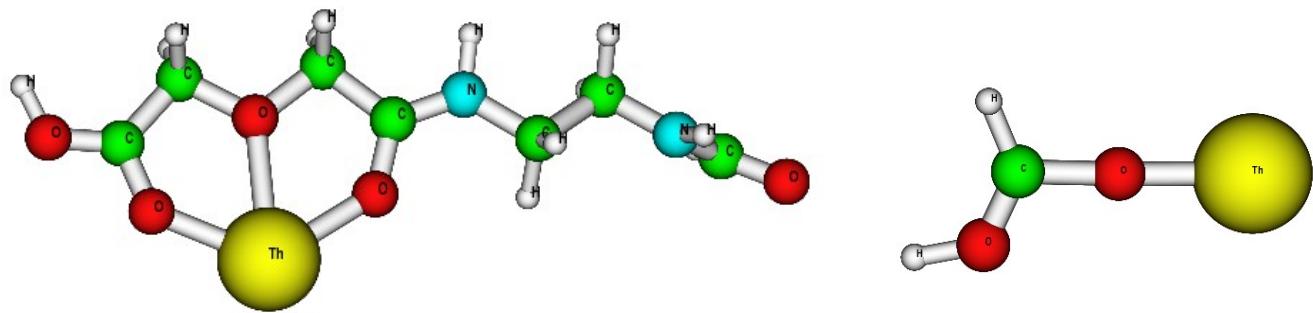
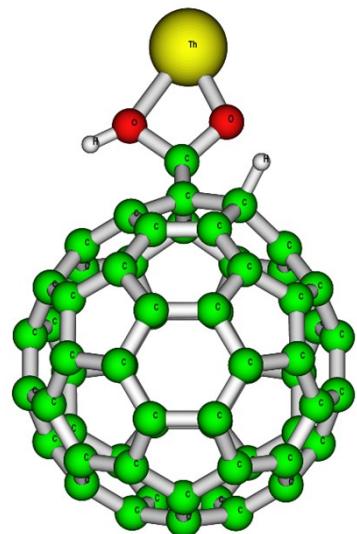
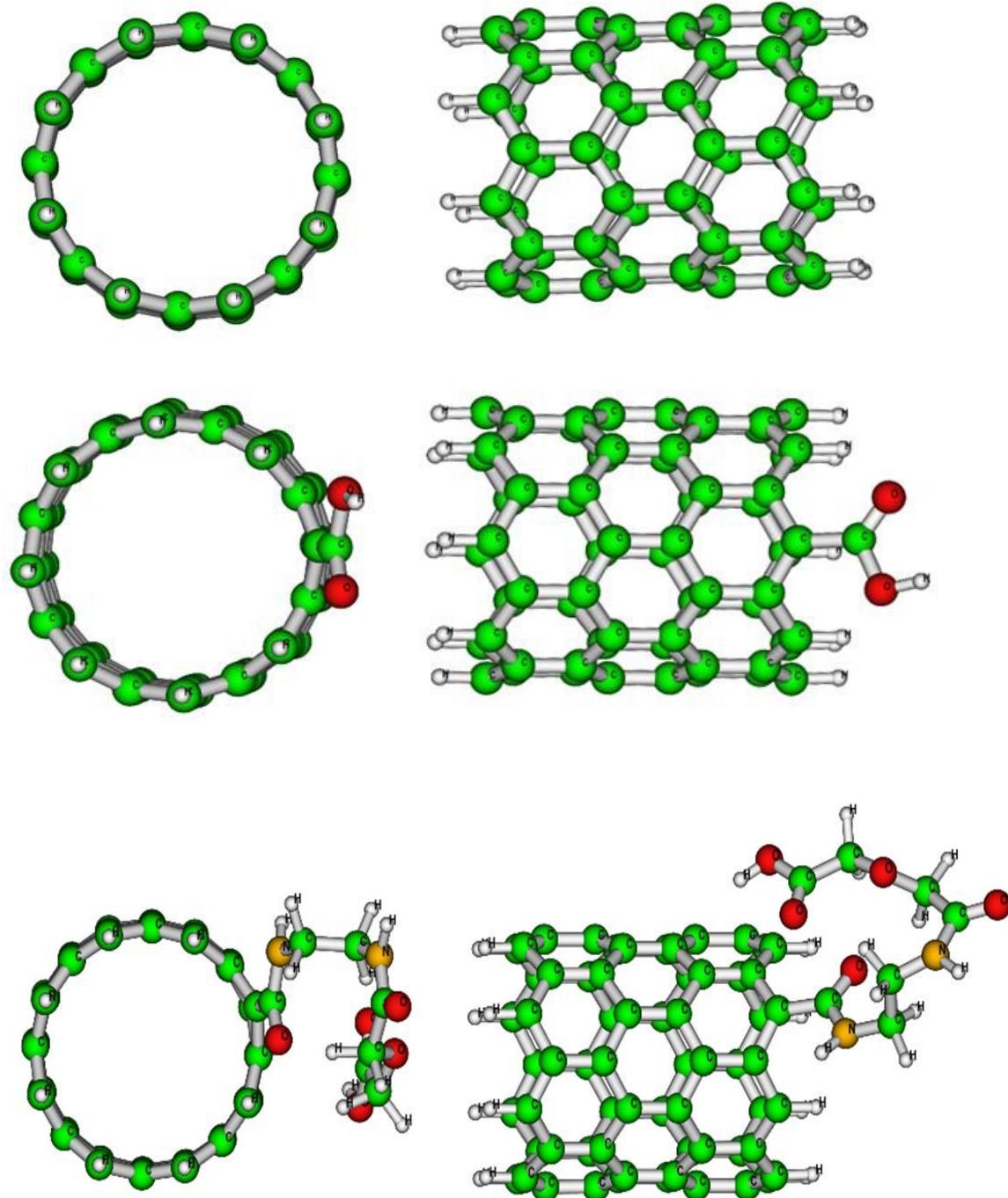


*M-C: distances between metal and nearest six carbon atoms of a hexagon the CNT; [#] Average of two similar Th-O distances.

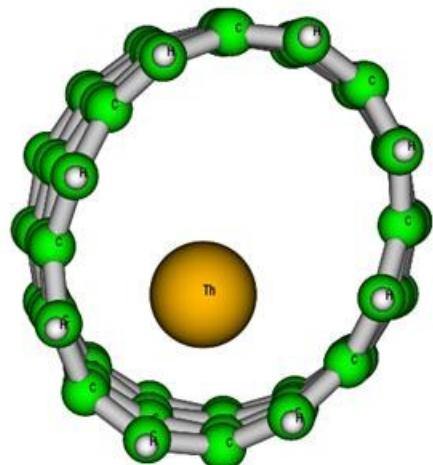
Table S5. Comparison of electronic and thermodynamic energies (in kcal/mol) of Th⁴⁺ ion with non-functionalized and functionalized CNT in absence of nitrate ion at two level of theory: (i)[#] Geometry optimization at BP with Grimme's D3 dispersion correction/SVP & single point energy at B3LYP/TZVP level and (ii)[†] Geometry optimization at BP with Grimme's D3 dispersion correction/SVP & single point energy at B3LYP with Grimme's D3 dispersion correction /TZVP level.

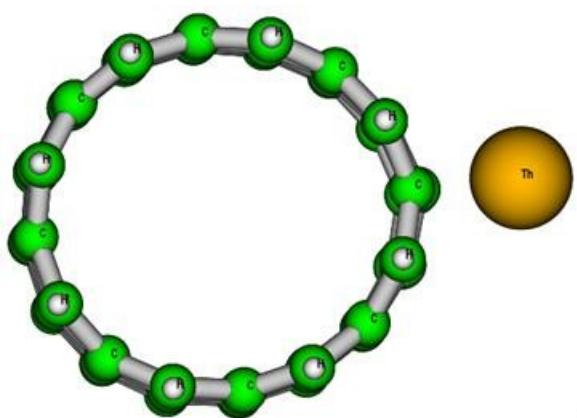
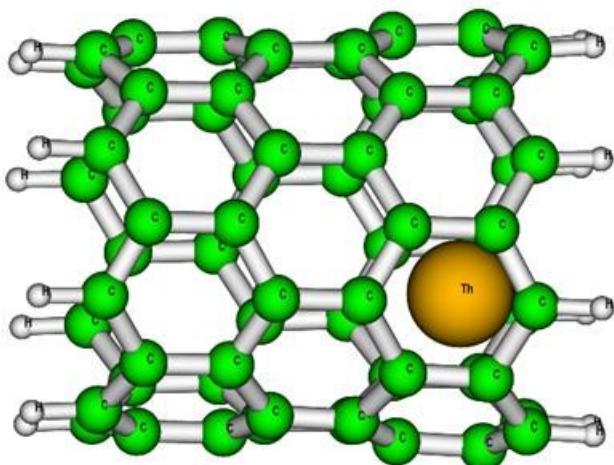

Complexation reaction	ΔE (i) [#]	ΔE (ii) [†]
Th ⁴⁺ + CNT _S = CNT _S -Th ⁴⁺	-760.61	-764.28
Th ⁴⁺ + CNT _O = CNT _O -Th ⁴⁺	-754.62	-765.84
CNT-COOH + Th ⁴⁺ = CNT-COOH-Th ⁴⁺	-792.83	-793.96
CNT-DGA + Th ⁴⁺ = CNT-DGA-Th ⁴⁺	-891.37	-884.54
Th ⁴⁺ (H ₂ O) ₈ + CNT _S = CNT _S -Th ⁴⁺ + 8H ₂ O	22.98	35.14
Th ⁴⁺ (H ₂ O) ₈ + CNT _O = CNT _O -Th ⁴⁺ + 8H ₂ O	28.97	33.58
CNT-COOH + Th ⁴⁺ (H ₂ O) ₈ = CNT-COOH-Th ⁴⁺ + 8H ₂ O	-9.23	5.46
CNT-DGA + Th ⁴⁺ (H ₂ O) ₈ = CNT-DGA-Th ⁴⁺ + 8H ₂ O	-107.77	-85.11

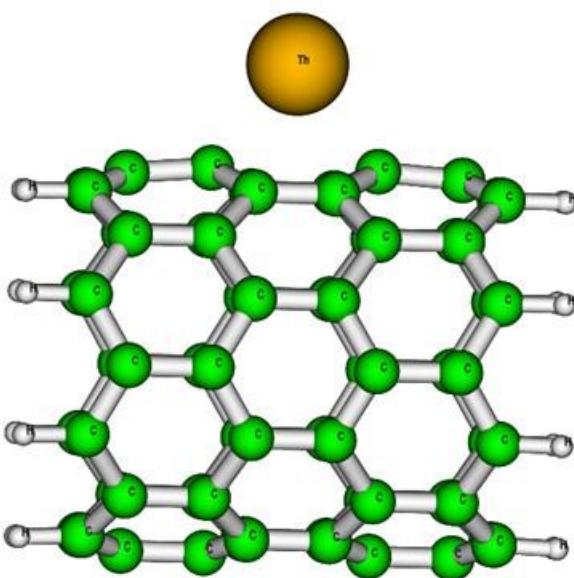

(a)

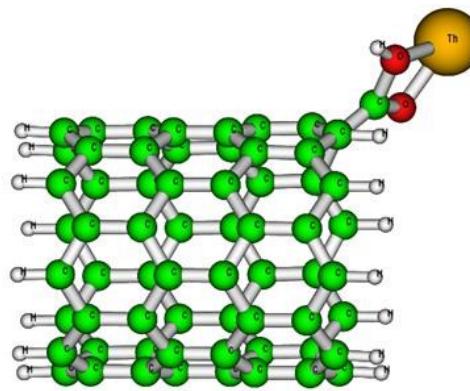

(b)

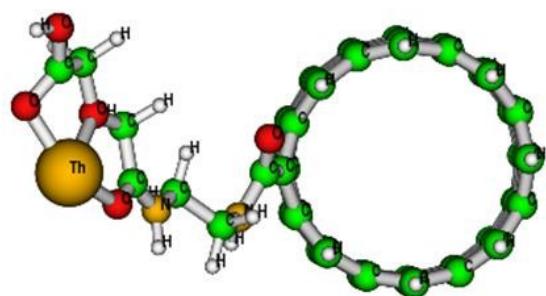
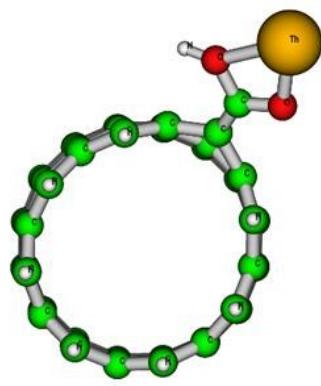

Fig. S1. Optimized structures of complexes of Th^{4+} ion with non-functionalized/pristine CNT: (a) Interaction from sidewall of CNT (CNT_s) and (b) from open edges of CNT (CNT_o) at BP/SVP level of theory.

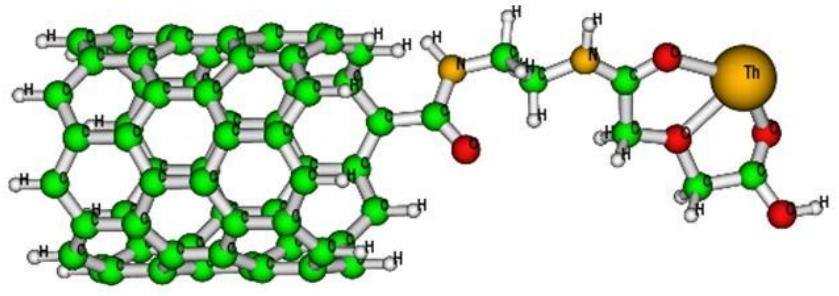

Fig. S2. Optimized structures of Th^{4+} complexes with DGA and COOH unit (connected to CNT in CNT-DGA and CNT-COOH, respectively) at BP/SVP level of theory.



Fig. S3. Optimized structure of Th^{4+} complexes with C_{60} -COOH at BP/SVP level of theory.


Fig. S4. Optimized geometries of pristine and COOH and DGA functionalized CNT at BP/SVP level of theory with dispersion-corrected DFT of Grimme's D3 scheme.


(a)



(b)


Fig. S5. Optimized structures of complexes of Th^{4+} ion with non-functionalized/pristine CNT at BP/SVP level of theory with dispersion-corrected DFT of Grimme's D3 scheme: (a) Interaction from sidewall of CNT (CNT_s) and (b) from open edges of CNT (CNT_o).

(a)

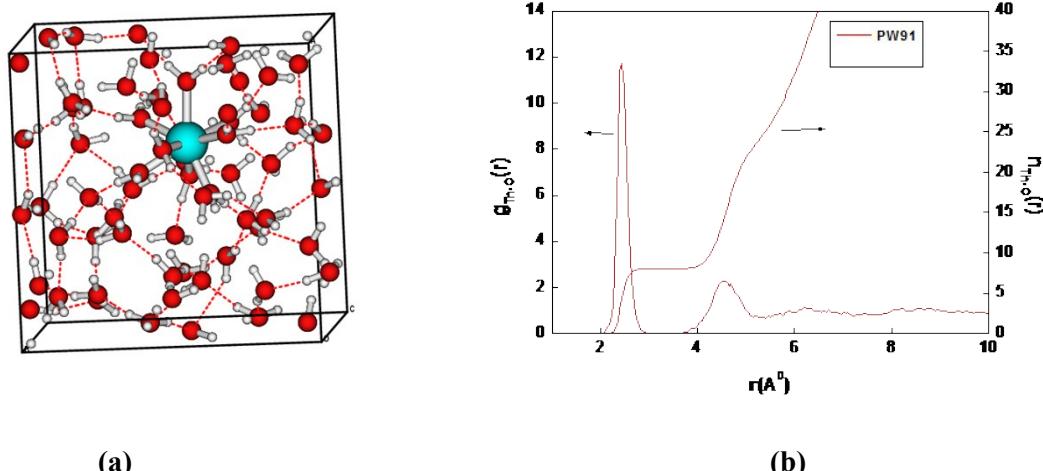

(b)

Fig. S6. Optimized structures of Th^{4+} ion complex with (a) CNT-COOH, and (b) CNT-DGA, at BP/SVP level of theory with dispersion-corrected DFT of Grimme's D3 scheme.

AIMD simulation of Th^{4+} -water system

AIMD simulation was carried out using Perdew-Wang 91 (PW91) density functional with projector augmented wave method as implemented in VASP simulation package^{S1}. The MD simulation box consists of one Th^{4+} ion and 64 water molecules in a cubic simulation cell of dimension $12.50\text{\AA} \times 12.50\text{\AA} \times 12.50\text{\AA}$ with standard periodic boundary condition resulting into water density of 1g/cc. The cutoff value of 984.83 eV was used for kinetic energy. The final temperature was kept at 440K to maintain the system at liquid state. Nose-Hoover thermostat was employed in the NVT ensemble with time step of 1 fs for total simulation run of 30 ps. The trajectories of last 10ps were used to calculate the radial distribution function of Th^{4+} ion water system and then first solvation shell coordination number. The first sphere coordination number calculated from the integrated RDF was found to be 8.00.

Fig. S7. (a) AIMD snap shot of Th^{4+} -(H_2O)₆₄ system and (b) radial distribution function of Th-O ($g_{\text{Th}-\text{O}}(r)$) using PW91.

Reference

S1. G. Kresse and J. Hafner, Phys. Rev. B, 1993, 48, 13115–13118.