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Experimental Section: 

Materials and instruments

All the materials for synthesis were purchased from commercial suppliers and used without 

further purifcation. Dry DMF (dried over molecular sieves), dry toluene (dried on sodium wire) 

and freshly distilled THF (distilled over sodium/benzophenone) were used in all experiments. 

NMR spectra were recorded using Bruker Avance (300 MHz) or Varian Inova (500 MHz) 

spectrometers. HRMS spectra were obtained on a Thermofinngan mass spectrometer. Absorption 

spectra were recorded on a Cary 5000 UV-VIS-NIR spectrophotometer. Fluorescence 

measurements were performed on a Cary Eclipse fluorescence spectrophotometer. Cyclic 

voltammetric measurements were performed on a PC-controlled CHI 62C electrochemical 

analyzer in dichloromethane (CH2Cl2) at a scan rate of 100 mV s-1. Tetrabutylammonium 

perchlorate (0.1 M) was used as supporting electrolyte. The glassy carbon, standard calomel 

electrode (SCE) and platinum wire were used as working, reference and counter electrodes, 

respectively. The potential of reference electrode was calibrated using ferrocene internal 

standard. All the potentials were reported against SCE. All measurements were carried out at 

room temperature. TGA and DSC experiments were conducted on Exstar TG/TGA 7200 and 

Exstar DSC 7020 instruments, respectively with 10 °C/min heating and cooling rate. 

Fluorescence lifetimes were measured using a Fluorog-3 time correlated single photon counting 

(TCSPC) instrument using NanoLed laser at 610 nm for excitation. 

DFT calculations:

Density Functional Theory (DFT) calculations were performed using Gaussian 09 ab initio 

quantum chemical software package.1 DFT was used for obtaining the ground-state properties, 

and time-dependent DFT (TDDFT) was used for the estimation of ground to excited-state 

transitions. The geometries were optimized until the maximum internal forces acting on all the 

atoms and the stress were less than 4.5×10 eV/Å and 1.01×10-3 kbar respectively. The minima 

were further confirmed by vibrational analysis with zero negative frequencies. No symmetry 

constraints were applied during the geometry optimization. The gas phase relaxations of atomic 

positions of all the seven derivatives was carried out by employing the hybrid Becke, three-

parameter,2,3 Lee-Yang-Parr2-4 exchange-correlation functional (B3LYP) and a 6-31G (d,p) 
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basis.5-7 These relaxed geometries were used as inputs for further calculations. To perform the 

calculations without compromising the results, long alkyl chains were replaced with methyl 

groups. The geometries were then used to obtain the frontier molecular orbitals (FMOs), vertical 

and adiabatic ionization potential, vertical and adiabatic electron affinities and also subjected to 

the single-point TDDFT studies (first 20 vertical singlet–singlet transitions) to obtain the UV-Vis 

spectra of the derivatives. The integral equation formalism polarizable continuum model (PCM)8, 

9 within the self-consistent reaction field (SCRF) theory has been used for TDDFT calculations 

to describe the solvation of the derivatives in chloroform solvent. The TDDFT calculations were 

performed with various functionals like B3LYP, cam-B3LYP9 and M06-2X.10 The software 

GaussSum 3.011 was employed to simulate the absorption spectrum and to interpret the nature of 

transitions. The percentage contributions of individual units present in the dyes to the respective 

molecular orbitals were calculated.

OFET fabrication

Bottom-contact/bottom-gate OFET devices were fabricated using n-doped-Si/SiO2 substrates 

where Si and SiO2 were used as the gate electrode and gate dielectric, respectively. The 

substrates were cleaned using ultrasonication in acetone, and in iso-propanol. The cleaned 

substrates were dried under oven at 100 °C for 20 minutes. The substrates were modified with 

OTS to form a SAM monolayer and transferred into a glove box. Thin films of the small 

molecules were deposited on the treated substrates by spin coating the small molecule solution (8 

mg/mL) in chloroform, optionally followed by thermal annealing at 100 °C, under Argon. The 

OFET devices had a channel length (L) varied from 2.5 to 20 μm and a channel width (W) of 10 

mm. The measurements of the OFETs were carried out in Argon filled glove box using a Agilent 

4156 semiconductor parameter analyzer on a probe stage. The carrier mobility, μ, was calculated 

from the data in the linear and saturated regime according to the equation ISD = (W /L)Ciμ(VG–

VT )VD for linear and ISD = (W /2L)Ciμ(VG–VT)2 for saturation, where ISD is the drain current, W 

and L are channel width and length, respectively. Ci (Ci = 14.9 nF) is the capacitance per unit 

area of the gate dielectric layer and VG and VT are the gate voltage and threshold voltage, 

respectively. VG-VT of the device was determined from the relationship between the square root 

of ISD at the saturated regime.
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Synthesis of boronic ester intermediates

2-(benzofuran-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1):

To a 50 mL two-neck round-bottom flask containing benzofuran (2.00 g, 17 mmol), dry THF (20 

mL) was added and the resulting solution was cooled to -78 °C (dry ice/acetone). To this 

solution, n-BuLi (2.0 M, 6.8 mL, 17 mmol) was added drop wise. After stirring for 30 minutes at 

-78 °C, the temperature of the reaction mixture was allowed to reach RT and stirred at RT for 1 h 

followed by cooling down to -78 °C. 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4 

mL, 23 mmol) was added drop wise to the reaction mixture at -78 °C and the resulting solution 

was warmed to RT and stirred at RT overnight. After completion of the reaction monitored using 

TLC, the reaction was quenched at -78 °C by adding saturated NH4Cl solution and extracted 

three times with ethyl acetate (3x50 mL). The combined ethyl acetate extract was dried over 

anhydrous Na2SO4 and the solution was filtered and concentrated under reduced pressure. The 

residue obtained was purified using column chromatography to yield the title compound as 

yellow solid (Yield: 96%, 4.00 g).

1H NMR (500 MHz, δ ppm): 7.63 (d, J = 7.78 Hz, 1H), 7.57 (d, J = 8.39 Hz, 1H), 7.40 (s, 1H), 

7.36-7.32 (m, 1H), 7.23 (t, J = 7.17 Hz, 1H), 1.39 (s, 12H).

Similar procedure was adopted to synthesize 2-(5-hexylthiophen-2-yl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (Yellow liquid, Yield: 68%) and 4,4,5,5-tetramethyl-2-(4-

(trifluoromethyl)phenyl)-1,3,2-dioxaborolane (Off-white solid, Yield: 83%).

2-(5-hexylthiophen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3): 1H NMR (500 MHz, δ 

ppm): 7.49-7.44 (m, 1H), 7.47 (d, J = 3.02 Hz, 1H), 6.86 (d, J = 3.02 Hz, 1H), 2.88-2.81(m, 2H), 

1.73-1.64 (m, 2H), 1.41-1.25 (m, 18H), 0.91-0.85 (m, 3H).

4,4,5,5-tetramethyl-2-(4-(trifluoromethyl)phenyl)-1,3,2-dioxaborolane (4): 1H NMR (500 MHz, δ 

ppm): 7.91 (d, J = 8.80 Hz, 2H), 7.61 (d, J = 8.24 Hz, 2H), 1.35 (s, 12H).

4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)triphenylamine (2):

In a 50 mL two-neck round-bottom flask, 4-bromo-N,N-diphenylaniline (2.00 g, 6.1 mmol) was 

dissolved in dry THF (20 mL) and the mixture was cooled down to -78 °C (dry ice/acetone). To 
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this mixture, n-BuLi (2.0 M, 3.7 mL, 7.4 mmol) was added under N2 atmosphere and stirred for 

1 h at -78 °C followed by the drop wise addition of 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (1.40 g, 7.4 mmol). The reaction mixture was allowed to reach RT and stirred at 

RT overnight. After the disappearance of the starting materials in TLC, reaction was quenched 

by adding water (20 mL) and thus obtained aqueous solution was extracted with chloroform 

(3x50 mL). The combined chloroform extract was dried over anhydrous Na2SO4 and the solution 

was filtered and concentrated under reduced pressure. The residue obtained was purified using 

column chromatography to get the title compound as white solid (Yield: 61%, 1.40 g). 

1H NMR (500 MHz, δ ppm): 7.68-7.65 (m, 2H), 7.27-7.22 (m, 4H), 7.12-7.08 (m, 4H), 7.06-7.01 

(m, 4H), 1.33 (s, 12H)

Synthesis of ethynyl intermediates

The synthetic precursors, 2-ethynylnaphthalene (5), 2-ethynylanthracene (6) and 1-ethynylpyrene 

(7) were synthesized from their corresponding bromo derivatives. The corresponding bromo 

derivatives were first reacted with acetylene reagents followed by the de-protection yielded the 

required ethynyl precursors. Ethynyltrimethylsilane and 2-methyl-3-buten-2-ol were used as 

acetylene reagents for 2-bromonaphthalene, 2-bromoanthracene and 1-bromopyrene, 

respectively. General synthetic procedure for the ethynylation and de-protection are given below.

2-bromoanthracene:

2-bromoanthracene was prepared in a two step procedure using 2-aminoanthraquinone as 

synthetic precursor.

To a 500 mL two-neck round-bottom flask containing copper (II) bromide (20.00 g, 89.5 mmol) 

dissolved in dry acetonitrile (100 mL), isopentyl nitrite (12.00 mL, 89.5 mmol) was added at 0 

°C and the mixture was stirred for 30 minutes at 0 °C. The temperature of the reaction mixture 

was allowed to reach RT, stirred at RT for 30 minutes followed by cooling down to 0 °C. To the 

resultant solution, 2-Aminoanthraquinone (10.00 g, 44.7 mmol) dissolved in THF (150 mL) was 

quickly added and the solution was stirred for 2 h at 0 °C. After completion of reaction, organic 

solvents were removed by rotary evaporation to give a dark brown solid. To the above solid, 

water (200 mL) was added and the resulting slurry was vacuum filtered. The residue obtained 
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was thoroughly washed with water and dissolved in dichloromethane. The insoluble materials 

were filtered and the dichloromethane layer was dried over anhydrous Na2SO4. The 

dichloromethane solution was filtered and concentrated under reduced pressure. The residue 

obtained was purified using column chromatography to give 2-bromoanthraquinone as a yellow 

solid (Yield: 31%, 4.00 g).

To a solution of 2-Bromoanthraquinone (8.50 g, 29.6 mmol) in isopropyl alcohol and THF 

mixture (1:1, 200 mL) at 0 °C, NaBH4 (6.70 g, 177 mmol) was added and the reaction mixture 

was stirred at 0 °C for 3 h. The solution was then warmed to RT and additional NaBH4 (3.35 g, 

89 mmol) was added. The resulting solution was stirred at RT for 12 h followed by the addition 

of water (10 mL). The resultant mixture was stirred at RT for an additional 12 h. After the 

completion of the reaction, solvent was removed by rotary evaporation. To the residue obtained, 

HCl (3M) was slowly added until the bubbling was ceased followed by the addition of additional 

3M HCl (30 mL). The resulting solution was stirred under reflux conditions for 6 h and cooled 

down to RT and concentrated under reduced pressure. The resultant suspension was filtered and 

the obtained residue was dissolved in dichloromethane. The dichloromethane solution was dried 

over anhydrous Na2SO4 and filtered. The solution obtained was concentrated under reduced 

pressure and the residue was purified using column chromatography to give the title compound 

(Yield: 22%, 2.20 g).

Ethynylation of 2-bromonaphthalene and 2-bromoanthracene

To a two-neck 50 mL round-bottom flask, corresponding bromo derivative (10 mmol), 

bis(triphenylphosphine)palladium(II) dichloride (10 mol%) and CuI (10 mol%) were added and 

fitted to a reflux condenser. The reaction vessel was evacuated and filled with N2 gas. Freshly 

distilled triethylamine (5 mL) was added to the reaction vessel and the resultant solution was 

purged with N2 gas for 15 minutes. Ethynyltrimethylsilane (15 mmol) was added drop wise to 

the reaction mixture and the resultant mixture was heated to 40 °C and stirred at this temperature 

overnight. After completion of the reaction monitored using TLC, insoluble materials were 

removed by filtration through celite and the filtrate was concentrated and partitioned between 

water and ethyl acetate. The ethyl acetate layer collected and the aqueous layer was washed with 

ethyl acetate (3x20 mL). The combined ethyl acetate extract was dried over anhydrous Na2SO4 
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and filtered. The solution obtained was concentrated and the residue was purified using column 

chromatography to obtain the title compound.

Trimethyl(naphthalen-2-ylethynyl)silane (Yield: 80%, 1.5 g). (anthracen-2-ylethynyl)trimethyl 

silane (Yield: 80%, 2.1 g).

Silyl de-protection of trimethyl(naphthalen-2-ylethynyl)silane and (anthracen-2-

ylethynyl)trimethylsilane:

To the solution of corresponding ethynyltrimethylsilane (6.5 mmol) in dichloromethane and 

methanol mixture (1:1, 40 mL), potassium hydroxide (13 mmol) was added and the resultant 

solution was stirred for 3 h at RT. After the complete disappearance of starting materials 

monitored using TLC, the reaction mixture was poured into water and extracted with ethyl 

acetate (3x20 mL). The combined organic extract was dried over anhydrous Na2SO4 and filtered. 

The solution obtained was concentrated and the residue was purified using column 

chromatography to give the desired compound over 90% yield.

2-ethynylnaphthalene (5): 1H NMR (500 MHz, δ ppm): 8.02 (s, 1H), 7.82-7.76 (m, 3H), 7.52-

7.47 (m, 3H), 3.14 (s, 1H).

2-ethynylanthracene (6): 1H NMR (500 MHz, δ ppm): 8.39 (d, J = 3.5 Hz, 2H), 8.22 (s, 1H), 

8.02-7.98 (m, 2H), 7.96-7.93.(m, 1H), 7.50-7.45 (m, 3H), 3.20 (s, 1H).

2-methyl-4-(pyren-1-yl)but-3-yn-2-ol:

To a two-neck 100 mL round-bottom flask, 1-bromopyrene (2.00 g, 7.1 mmol), 2-methyl-3-

buten-2-ol (4.78 g, 56.9 mmol), triphenylphosphine (0.75 g, 9.8 mmol), CuI (0.40 g, 2.13 mmol) 

and dichloro[1,1′-bis(diphenylphosphino)ferrocene] palladium (II) dichloromethane complex 

(1:1) (116 mg, 20 mol%) were added and fitted to a reflux condenser. The reaction vessel was 

evacuated and filled with N2 gas. Dry toluene (8 mL) and freshly distilled triethylamine (30 mL) 

were added to the reaction vessel and the resultant solution was purged with N2 gas for 15 

minutes. The resultant mixture was heated to 80 °C and stirred at this temperature overnight. 

After completion of the reaction, reaction mixture was cooled to RT and partitioned between 

water and ethyl acetate. Ethyl acetate layer was collected and the aqueous layer was washed with 

ethyl acetate (3x20 mL). The combined ethyl acetate extract was dried over anhydrous Na2SO4 
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and filtered. The solution obtained was concentrated and the residue was purified using column 

chromatography to obtain the desired compound (Yield: 84%, 1.7 g).

1H NMR (500 MHz, δ ppm): 8.51-8.48 (m, 1H), 8.22-8.13 (m, 3H), 8.09-8.06 (m, 3H), 8.03-7.99 

(m, 2H), 2.30-2.27 (m, 1H), 1.80 (s, 6H).

1-ethynylpyrene (7):

2-methyl-4-(pyren-1-yl)but-3-yn-2-ol (1.50 g, 5.27 mmol) and KOH (0.65 g, 11 mmol) were 

dissolved in isopropanol (30 mL) in a 50 mL two-neck round-bottom flask and the mixture was 

heated to 80 °C and stirred at this temperature for 3 h. After the disappearance of the starting 

materials monitored using TLC, the reaction mixture was cooled RT and poured into water. The 

aqueous solution was extracted three times with ethyl acetate (3x50 mL). The combined organic 

extract was dried over anhydrous Na2SO4 and filtered. The solution obtained was concentrated 

and the residue was purified using column chromatography to yield the title compound (Yield: 

93%, 1.1 g).

1H NMR (500 MHz, δ ppm): 8.60-8.57 (m, 1H) 8.24-8.15 (m, 4H), 8.11-8.08 (m, 2H), 8.05-8.01 

(m, 2H), 3.62 (s, 1H).

Synthesis of diketopyrrolopyrrole (DPP) intermediates 

2,5-Bis(2-ethylhexyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4c]pyrrole-1,4(2H,5H)-dione12:

In a two-neck round-bottom flask, 3,6-dithiophen-2-yl-2,5-dihydro- pyrrolo[3,4-c]pyrrole-1,4-

dione (20.00 g, 66.66 mmol) and anhydrous K2CO3 (29.85 g, 216 mmol) were dissolved in dry 

DMF (400 mL) and this solution was purged with N2 gas for 30 minutes. The resultant solution 

was stirred under heating at 120 °C for 1 h followed by the drop wise addition of 2-Ethylhexyl 

bromide (38.62 g, 200 mmol) and catalytic amount of 18-crown-6. The temperature of the 

reaction mixture was raised to 150 °C and stirred overnight at 150 °C. After the completion of 

the reaction, the reaction mixture was cooled to RT and partitioned between chloroform and 

water. The chloroform layer was collected and the aqueous layer was washed with CHCl3 (3x50 

mL). The combined organic extract was dried over anhydrous Na2SO4 and filtered. The solution 

obtained was concentrated and the residue was purified using column chromatography to yield 

the desired compound as a dark red solid (Yield: 22%, 8.0 g).
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3,6-bis(5-bromothien-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dion12:

In a 250 mL two-neck round-bottom flask, 2,5-Bis(2-ethylhexyl)-3,6-di(thiophen-2-

yl)pyrrolo[3,4c]pyrrole-1,4(2H,5H)-dione (4.00 g, 7.62 mmol) was dissolved in chloroform (80 

mL) and this solution was cooled to 0 °C. After stirring at 0 °C for 20 minutes, NBS (2.88 g, 

16.7 mmol) was added portion wise over 30 minutes and the resultant mixture was stirred for 

another 30 minutes to complete the reaction. After the completion of reaction, solvent was 

removed under reduced pressure and the resulting solid was purified using column 

chromatography to yield the target compound (Yield: 78%, 4.1 g).

3-(5-(benzofuran-2-yl)thiophen-2-yl)-6-(5-bromothiophen-2-yl)-2,5-bis(2 ethylhexyl)pyrrolo 

[3,4-c] pyrrole-1,4(2H,5H)-dione (A):

To a 250 mL two-neck round-bottom flask, 3,6-bis(5-bromothiophen-2-yl)-2,5-bis(2-ethylhexyl) 

pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (2.00 g, 2.93 mmol), 2-(benzofuran-2-yl)-4,4,5,5-

tetramethyl-1,3,2-dioxaborolane (0.71g, 2.93 mmol), Pd(PPh3)4 (67 mg, 5 mol%) and Na2CO3 

(4.95 g, 460 mmol) were added and fitted to reflux condenser. The reaction vessel was evacuated 

and filled with N2 gas. Dry toluene (70 mL) was added to the flask and the mixture was purged 

with N2 gas for 30 minutes. A solution of H2O and EtOH mixture (2:1, 44.5 mL) was added to 

the reaction mixture and the mixture was heated to 90 °C and stirred at this temperature 

overnight. After completion of the reaction, reaction mixture was cooled to RT and diluted with 

ethyl acetate and water. The organic layer was collected and the aqueous layer was extracted 

with ethyl acetate (3x50 mL). The combined ethyl acetate extract was dried over anhydrous 

Na2SO4 and filtered. The solution obtained was concentrated and the residue was purified using 

column chromatography to obtain the desired compound (Yield: 28%, 0.6 g).

1H NMR (500 MHz, δ ppm): 8.98 (d, J = 4.15 Hz, 1H), 8.65 (d, J = 4.15 Hz, 1H), 7.60-7.56 (m, 

2H), 7.51 (d, J = 8.06 Hz, 1H), 7.36-7.30 (m, 1H), 7.26 (m, 1H), 7.22 (d, J = 4.15 Hz, 1H), 7.05 

(s, 1H), 4.08-3.93 (m, 2H), 1.96-1.82 (m, 2H), 1.41-1.27 (m, 16H), 0.91-0.86 (m, 12H). 13C 

NMR (125 MHz, δ ppm): 161.6, 161.3, 154.9, 149.9, 140.1, 138.8, 138.1, 136.7, 135.2, 135.1, 

131.4, 129.4, 128.8, 128.5, 125.4, 125.4, 123.5, 121.2, 118.7, 111.2, 108.3, 103.7, 46.0, 39.2, 

39.1, 30.3, 30.2, 29.7, 28.5, 28.3, 23.6, 23.6, 23.1, 23.0, 14.1, 14.0, 10.5.

Synthesis of target DPP-derivatives
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3-(5-(benzofuran-2-yl)thiophen-2-yl)-6-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)-2,5-bis(2-

ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (BFTPADPP):

To a 50 mL two-neck round-bottom flask, 1 (0.20 g, 0.277 mmol), N,N-diphenyl-4-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (0.20 g, 0.55 mmol), Pd(PPh3)4 (6 mg, 5 mol%) and 

Na2CO3 (0.47 g, 4.4 mmol) were added and fitted to a reflux condenser. The reaction vessel was 

evacuated and filled with N2 gas. Freshly degassed toluene (20 mL) was added to the reaction 

vessel followed by the addition of H2O and EtOH mixture (2:1, 10.5 mL). The resulting solution 

was purged with N2 gas for 30 minutes and heated to 90 °C and stirred at this temperature 

overnight. Reaction progress was monitored using TLC. After completion of the reaction, 

reaction mixture was cooled to RT and partitioned between with chloroform and water. The 

choloform layer was collected and the aqueous layer was extracted with chloroform (3x10 mL). 

The combined chloroform extract was dried over anhydrous Na2SO4 and filtered. The solution 

obtained was concentrated. The residue obtained was washed several times with pure methanol 

and re-crystallized in toluene to yield the title compound (Yield: 89%, 0.22 g).

1H NMR (500 MHz, δ ppm): 9.05 (d, J = 4.27 Hz, 1H), 8.95 (d, J = 4.12 Hz, 1H), 7.60-7.56 (m, 

2H), 7.54-7.51 (m, 3H), 7.38 (d, J = 4.27 Hz, 1H), 7.35-7.27 (m, 6H), 7.16-7.13 (m, 4H), 7.11-

7.04 (m, 5H), 4.13-4.04 (m, 4H), 1.99-1.91 (m, 2H), 1.43-1.26 (m, 16H), 0.94-0.84 (m, 12H); 
13C NMR (125 MHz, δ ppm): 161.8, 161.5, 154.9, 150.3, 150.1, 148.6, 147.0, 140.5, 138.6, 

137.6, 137.4, 136.0, 129.7, 129.4, 128.9, 127.6, 126.9, 126.4, 125.4, 125.2, 125.0, 123.7, 123.5, 

122.7, 121.1, 111.2, 108.8, 107.8, 103.4, 46.0, 39.2, 39.1, 30.3, 29.7, 28.5, 23.6, 23.1, 14.0, 10.6, 

10.5.

ESI-HRMS (Positive mode, m/z): 884.38991 (M+H+), Calc. for C56 H58 O3 N3 S2 is 884.39141. 

Similar procedure was adopted to synthesize 3-(5-(benzofuran-2-yl)thiophen-2-yl)-2,5-bis(2-

ethylhexyl)-6-(5-(4 (trifluoromethyl)phenyl)thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H) 

dione (BFTFDPP) (Yield: 80%, 0.17 g) and 3-(5-(benzofuran-2-yl)thiophen-2-yl)-2,5-bis(2-

ethylhexyl)-6-(5'-hexyl-2,2'-bithiophen-5-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione 

(BFHTDPP) (Yield: 84%, 0.20 g)

BFTFDPP: 1H NMR (500 MHz, δ ppm): 9.01 (d, J = 4.12 Hz, 1H), 8.94 (d, J = 4.12 Hz, 1H), 

7.79-7.79 (m, 2H), 7.77-7.66 (m, 2H), 7.61-7.58 (m, 2H), 7.55-7.51 (m, 2H), 7.39-7.32 (m, 1H), 
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7.26 (s, 1H), 7.07 (s, 1H), 4.14-4.04 (m, 4H), 1.98-1.90 (m, 2H), 1.46-1.26 (m, 16H), 0.95-0.86 

(m, 12H); 13C NMR (125 MHz, δ ppm): 161.7, 161.5, 154.9, 149.9, 147.2, 140.0, 138.1, 136.7, 

136.5, 136.4, 130.1, 130.0, 129.4, 128.8, 126.2, 125.7, 125.4, 125.34, 123.5, 121.2, 111.2, 108.8, 

108.6, 103.7, 46.0, 39.3, 30.3, 28.6, 28.5, 23.7, 23.1, 14.1, 10.6, 10.5.

ESI-HRMS (Positive mode, m/z): 785.30386 (M+H+), Calc. for C45 H48 O3 N2 F3 S2 is 

785.30530.

BFHTDPP: 1H NMR (500 MHz, δ ppm): 8.97 (dd, J = 10.99 Hz, 2H), 7.60-7.57 (m, 2H), 7.5-

7.50 (m, 1H), 7.35-7.31 (m, 1H), 7.26 (m, 1H), 7.24 (d, J = 4.12 Hz, 1H), 7.15 (d, J = 3.66 Hz, 

1H), 7.05 (s, 1H), 6.76-6.74 (m, 1H), 4.14-4.00 (m, 4H), 2.85-2.80 (m, 2H), 1.97-1.90 (m, 2H), 

1.73-1.67 (m, 2H), 1.43-1.26 (m, 22H), 0.94-0.86 (m, 15H); 13C NMR (125 MHz, δ ppm): 161.7, 

161.5, 154.9, 150.1, 147.9, 143.8, 140.2, 138.8, 137.4, 137.2, 136.0, 133.5, 129.7, 128.9, 127.3, 

125.4, 125.2, 125.1, 124.0, 123.5, 121.1, 111.2, 108.1, 103.5, 46.0, 39.2, 31.5, 30.3, 28.7, 28.5, 

23.7, 23.1, 22.5, 14.1, 10.6.

ESI-HRMS (Positive mode, m/z): 807.36672 (M+H+), Calc. for C48 H59 O3 N2 S3 is 807.36823.

The target DPP derivatives BFPhDPP. BFNaDPP. BFAnDPP and BFPyDPP were synthesized 

from 1 and the corresponding ethynyl precursors by adopting Sonogashira coupling reaction 

protocol. General procedure for their synthesis is given below. 

To a 100 mL two-neck round-bottom flask, 1 (1 mmol), CuI (7 mol%), Pd(PPh3)4 (2 mol%) and 

the corresponding acetylene compound were added and fitted to a reflux condenser. The reaction 

vessel was evacuated and filled with N2 gas. Dry toluene (30 mL) to and dry diethylamine (2 

mL) were added to the reaction vessel and the resulting solution was purged with N2 gas for 20 

minutes. The reaction mixture was heated to reflux temperature and stirred at this temperature 

overnight. After completion of reaction monitored using TLC, water (50 mL) was added to the 

reaction mixture and the resulting solution was extracted with chloroform (3x50 mL). The 

combined organic extract was subjected to serial washings with water followed by brine solution. 

Thus obtained chloroform solution was dried over anhydrous Na2SO4 and filtered. The solution 

obtained was concentrated and the residue was purified using column chromatography. 

3-(5-(benzofuran-2-yl)thiophen-2-yl)-2.5-bis(2-ethylhexyl)-6-(5-(phenylethynyl)thiophen-2-

yl)pyrrolo[3.4-c]pyrrole-1.4(2H.5H)-dione (BFPhDPP) (Yield: 85%, 0.17 g)
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BFPhDPP: 1H NMR (500 MHz, δ ppm): 9.02 (d, J = 4.12 Hz, 1H), 8.91(d, J = 4.12 Hz, 1H), 

7.62-7.51 (m, 5H), 7.41-7.37 (m, 4H), 7.34 (t, J = 8.0 Hz, 1H), 7.28 (s, 1H), 7.07 (s, 1H), 4.14-

4.00 (m, 4H), 1.98-1.89 (m, 2H), 1.45-1.25 (m, 16H), 0.95-0.86 (m, 12H); 13C NMR (125 MHz, 

δ ppm): 161.6, 161.6, 161.5, 140.6, 139.3, 135.5, 135.3, 132.9, 132.8, 131.5, 130.8, 130.5, 129.8, 

129.0, 128.6, 128.5, 128.3, 122.3, 108.7, 108.0, 97.7, 97.5, 82.3, 46.0, 45.9, 39.1, 39.1, 30.1, 

30.1, 28.3, 23.5, 23.0, 14.0, 10.5.

ESI-HRMS (Positive mode, m/z): 741.31702 (M+H+), Calc. for C46 H49 O3 N2 S2 is 741.31791.

3-(5-(benzofuran-2-yl)thiophen-2-yl)-2.5-bis(2-ethylhexyl)-6-(5-(naphthalen-2-

ylethynyl)thiophen-2-yl)pyrrolo[3.4-c]pyrrole-1.4(2H.5H)-dione (BFNaDPP) (Yield: 86%, 0.19 

g).

BFNaDPP: 1H NMR (500 MHz, δ ppm): 9.02 (d, J = 4.12 Hz, 1H), 8.94 (d, J = 4.12 Hz, 1H), 

8.09 (s, 1H), 7.86-7.83 (m, 3H), 7.61-7.57 (m, 3H), 7.54-7.51 (m, 3H), 7.44-7.42 (m, 1H), 7.36-

7.32 (m, 1H), 7.28 (s, 1H), 7.07 (s, 1H), 4.13-4.02 (m, 4H), 1.98-1.91 (m, 2H), 1.44-1.27 (m, 

16H), 0.95-0.88 (m, 12H); 13C NMR (125 MHz, δ ppm): 161.6, 161.5, 154.9, 149.9, 139.9, 

139.1, 138.1, 136.7, 135.5, 133.1, 133.0, 132.9, 131.7, 130.6, 129.4, 128.8, 128.4, 128.2, 127.9, 

127.9, 127.8, 127.8, 127.1, 126.8, 125.4, 125.4, 123.5, 121.1, 119.5, 111.2, 108.9, 108.6, 103.7, 

98.2, 82.7, 46.1, 46.0, 39.2, 39.1, 30.3, 30.1, 29.7, 29.6, 28.5, 28.3, 23.6, 23.5, 23.1, 14.1, 10.5.

ESI-HRMS (Positive mode, m/z): 791.33216 (M+H+), Calc. for C50 H51 O3 N2 S2 is 791.33356.

3-(5-(anthracen-2-ylethynyl)thiophen-2-yl)-6-(5-(benzofuran-2-yl)thiophen-2-yl)-2.5-bis(2-

ethylhexyl)pyrrolo[3.4-c]pyrrole-1.4(2H.5H)-dione (BFAnDPP) (Yield: 87%, 0.20 g).

BFAnDPP: 1H NMR (500 MHz, δ ppm): 9.04-9.02 (m, 1H), 8.96-8.94 (m, 1H), 8.43-8.39 (m, 

2H), 8.27-8.24 (m,1H), 8.04-7.97 (m, 3H), 7.61-7.58 (m, 2H), 7.54-7.48 (m, 4H), 7.46-7.44 (m, 

1H), 7.36-7.32 (m, 1H), 7.29-7.27 (m, 1H), 7.08-7.05 (m, 1H), 4.13-4.03 (m 4H), 1.99-1.91 (m, 

2H), 1.45-1.28 (m, 16H), 0.96-0.88 (m, 12H); 13C NMR (125 MHz, δ ppm): 161.6, 161.5, 155.0, 

154.8, 149.9, 136.7, 135.5, 133.0, 132.4, 132.1, 130.7, 130.7, 128.8, 128.5, 128.3, 128.2, 126.8, 

126.6, 126.3, 125.9, 125.4, 125.3, 123.5, 121.2, 119.0, 111.2, 108.7, 103.7, 98.6, 98.0, 92.5, 83.3, 

46.1, 46.1, 39.2, 39.1, 30.3, 30.1, 28.5, 28.3, 23.6, 23.1, 14.1, 10.5.

ESI-HRMS (Positive mode, m/z): 841.34820 (M+H+), Calc. for C54 H53 O3 N2 S2 is 841.34921.
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3-(5-(benzofuran-2-yl)thiophen-2-yl)-2.5-bis(2-ethylhexyl)-6-(5-(pyren-1 ylethynyl)thiophen-2-

yl)pyrrolo[3.4-c]pyrrole-1.4(2H.5H)-dione (BFPyDPP) (Yield: 91%, 0.22 g).

BFPyDPP: 1H NMR (500 MHz, δ ppm): 9.01 (dd, J = 18.76 Hz, 2H), 8.58 (d, J = 9.00 Hz, 1H), 

8.27-8.19 (m, 4H), 8.16-8.10 (m, 2H), 8.07-8.03 (m, 2H), 7.60-7.57 (m, 2H), 7.55-7.50 (m, 2H), 

7.36-7.31 (m, 1H), 7.26 (m, 1H), 7.05 (s, 1H), 4.15-4.03 (m, 4H), 2.01-1.92 (m, 2H), 1.48-1.28 

(m, 16H), 0.98-0.88 (m, 12H); 13C NMR (125 MHz, δ ppm): 161.5, 161.4, 154.9, 149.9, 139.7, 

139.0, 138.0, 136.7, 135.6, 132.9, 131.8, 131.7, 131.1, 130.9, 130.7, 129.4, 128.8, 128.6, 128.5, 

127.1, 126.3, 125.9, 125.8, 125.6, 125.4, 125.3, 125.1, 124.5, 124.3, 124.1, 123.5, 121.1, 116.5, 

111.2, 108.8, 108.6, 103.6, 97.4, 88.0, 46.1, 46.0, 39.2, 39.2, 30.3, 30.2, 28.5, 28.4, 23.6, 23.1, 

14.1, 10.5.

ESI-HRMS (Positive mode, m/z): 865.34798 (M+H+), Calc. for C56 H53 O3 N2 S2 is 865.34921.
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Fig. S24. Normalized absorption spectra of the synthesized DPP-derivatives in various solvents
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Fig. S25. Normalized emission spectra of the synthesized DPP-derivatives in various solvents
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Fig. S26. Emission spectra of the synthesized DPP-derivatives in their thin film state
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Fig. S27. TCSPC data and their corresponding fit curves of the synthesized DPP-derivatives
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Table S1: HOMO (H) energy, LUMO (L) energy and HOMO-LUMO gap (EH-L), ground state dipole 
moment (μgs), transition dipole moments (μge), adiabatic electron affinity (EAa) and adiabatic ionization 
potential (IPa) of the DPP-derivatives calculated at B3LYP/6-31G (d,p) level.

Material code H
(eV)

L
(eV)

EH-L
(eV)

µgs µge IPa
(eV)

EAa
(eV)

BFTPADPP -4.68 -2.61 2.07 3.25 5.99 5.48 -1.71
BFHTDPP -4.76 -2.70 2.06 2.02 5.46 5.70 -1.72
BFTFDPP -4.97 -2.86 2.11 3.43 5.21 5.94 -1.91
BFPhDPP -4.85 -2.79 2.06 0.74 5.71 5.79 -1.83
BFNaDPP -4.84 -2.79 -2.05 1.08 6.08 5.74 -1.88
BFAnDPP -4.83 -2.81 2.02 1.34 6.46 5.68 -1.93
BFPyDPP -4.80 -2.81 1.99 1.54 6.66 5.63 -1.95

Table S2. Absorption maxima (max), oscillator strength (f), main orbital transitions and coefficients of 
wave functions (CI) of the DPP-derivatives calculated at B3LYP/6-31G (d,p) in chloroform solvent 
phase.

Material code λmax(nm) f CI
BFTPADPP 678 1.858 HOMO→LUMO (0.7054)
BFHTDPP 657 1.674 HOMO→LUMO (0.7103)
BFTFDPP 638 1.549 HOMO→LUMO (0.7102)
BFPhDPP 658 1.798 HOMO→LUMO (0.7099)
BFNaDPP 666 1.973 HOMO→LUMO (0.7090)
BFAnDPP 680 2.152 HOMO→LUMO (0.7081)
BFPyDPP 697 2.2427 HOMO→LUMO (0.7067)

Table S3: Absorption maxima (max), oscillator strength (f), main orbital transitions, coefficients of wave 
functions (CI) of the DPP-derivatives calculated at M062X/6-31G (d,p) level in chloroform solvent 
phase

Material code λmax(nm) f CI
BFTPADPP 579 1.6013 HOMO->LUMO (97%)
BFHTDPP 577 1.801 HOMO->LUMO (93%)
BFTFDPP 564 1.4845 HOMO->LUMO (98%)
BFPhDPP 577 1.692 HOMO->LUMO (97%)
BFNaDPP 580 1.827 HOMO→LUMO (0.6955)
BFAnDPP 585 1.971 HOMO→LUMO (0.6885)
BFPyDPP 594 2.0779 HOMO->LUMO (94%)



S33

Table S4: Absorption maxima (max), oscillator strength (f), main orbital transitions, coefficients of wave 
functions (CI) calculated at cam-B3LYP/6-31G (d,p) level in chloroform solvent phase.

Material code λmax(nm) f CI
BFTPADPP 575 1.6181 HOMO->LUMO (96%)
BFHTDPP 572 1.7997 HOMO->LUMO (90%)
BFTFDPP 560 1.5029 HOMO->LUMO (96%)
BFPhDPP 574 1.7151 HOMO->LUMO (96%)
BFNaDPP 577 1.850 HOMO→LUMO (0.6898)
BFAnDPP 581 1.989 HOMO→LUMO (0.6811)
BFPyDPP 590 2.1023 HOMO->LUMO (91%)
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Fig. S28. Theoretically generated UV-visbile absorption spectra of synthesized DPP-derivatives
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Fig. S29. Cylcic voltagramms represent the reversible reduction behaviour of the synthesized DPP-
derivatives
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Fig. S30. Output (a) and transfer (b) characteristics of BFTPADPP and Output (c) and transfer (d) 
characteristics for compound BFHTDPP after annealed at 100° C
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Fig. S31. Output (a) and transfer (b) characteristics for hole and Output (c) and transfer (d) characteristics 
for electron in BFTFDPP after annealed at 100° C
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Fig. S32. Output (a) and transfer (b) characteristics of BFPhDPP and Output (c) and transfer (d) 
characteristics of BFNaDPP after annealed at 100° C
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Fig. S33. Output (a) and transfer (b) characteristics of BFAnDPP
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Fig. S35. 1H NMR spectrum of 2
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Fig. S37. 1H NMR spectrum of 4
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Fig. S38. 1H NMR spectrum of 5

Fig. S39. 1H NMR spectrum of 6
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Fig. S41. 1H NMR spectrum of A
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Fig. S42. 13C NMR spectrum of A
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