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Experimental Section:

Materials and instruments

All the materials for synthesis were purchased from commercial suppliers and used without
further purifcation. Dry DMF (dried over molecular sieves), dry toluene (dried on sodium wire)
and freshly distilled THF (distilled over sodium/benzophenone) were used in all experiments.
NMR spectra were recorded using Bruker Avance (300 MHz) or Varian Inova (500 MHz)
spectrometers. HRMS spectra were obtained on a Thermofinngan mass spectrometer. Absorption
spectra were recorded on a Cary 5000 UV-VIS-NIR spectrophotometer. Fluorescence
measurements were performed on a Cary Eclipse fluorescence spectrophotometer. Cyclic
voltammetric measurements were performed on a PC-controlled CHI 62C electrochemical
analyzer in dichloromethane (CH,Cl,) at a scan rate of 100 mV s’!. Tetrabutylammonium
perchlorate (0.1 M) was used as supporting electrolyte. The glassy carbon, standard calomel
electrode (SCE) and platinum wire were used as working, reference and counter electrodes,
respectively. The potential of reference electrode was calibrated using ferrocene internal
standard. All the potentials were reported against SCE. All measurements were carried out at
room temperature. TGA and DSC experiments were conducted on Exstar TG/TGA 7200 and
Exstar DSC 7020 instruments, respectively with 10 °C/min heating and cooling rate.
Fluorescence lifetimes were measured using a Fluorog-3 time correlated single photon counting

(TCSPC) instrument using NanoLed laser at 610 nm for excitation.
DFT calculations:

Density Functional Theory (DFT) calculations were performed using Gaussian 09 ab initio
quantum chemical software package.! DFT was used for obtaining the ground-state properties,
and time-dependent DFT (TDDFT) was used for the estimation of ground to excited-state
transitions. The geometries were optimized until the maximum internal forces acting on all the
atoms and the stress were less than 4.5x10 eV/A and 1.01x1073 kbar respectively. The minima
were further confirmed by vibrational analysis with zero negative frequencies. No symmetry
constraints were applied during the geometry optimization. The gas phase relaxations of atomic
positions of all the seven derivatives was carried out by employing the hybrid Becke, three-

parameter,>? Lee-Yang-Parr>* exchange-correlation functional (B3LYP) and a 6-31G (d,p)
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basis.>”’ These relaxed geometries were used as inputs for further calculations. To perform the
calculations without compromising the results, long alkyl chains were replaced with methyl
groups. The geometries were then used to obtain the frontier molecular orbitals (FMOs), vertical
and adiabatic ionization potential, vertical and adiabatic electron affinities and also subjected to
the single-point TDDFT studies (first 20 vertical singlet—singlet transitions) to obtain the UV-Vis
spectra of the derivatives. The integral equation formalism polarizable continuum model (PCM)®
9 within the self-consistent reaction field (SCRF) theory has been used for TDDFT calculations
to describe the solvation of the derivatives in chloroform solvent. The TDDFT calculations were
performed with various functionals like B3LYP, cam-B3LYP? and M06-2X.!9 The software
GaussSum 3.0!!' was employed to simulate the absorption spectrum and to interpret the nature of
transitions. The percentage contributions of individual units present in the dyes to the respective

molecular orbitals were calculated.
OFET fabrication

Bottom-contact/bottom-gate OFET devices were fabricated using n-doped-Si/SiO, substrates
where Si and SiO, were used as the gate electrode and gate dielectric, respectively. The
substrates were cleaned using ultrasonication in acetone, and in iso-propanol. The cleaned
substrates were dried under oven at 100 °C for 20 minutes. The substrates were modified with
OTS to form a SAM monolayer and transferred into a glove box. Thin films of the small
molecules were deposited on the treated substrates by spin coating the small molecule solution (8
mg/mL) in chloroform, optionally followed by thermal annealing at 100 °C, under Argon. The
OFET devices had a channel length (L) varied from 2.5 to 20 pm and a channel width (W) of 10
mm. The measurements of the OFETs were carried out in Argon filled glove box using a Agilent
4156 semiconductor parameter analyzer on a probe stage. The carrier mobility, u, was calculated
from the data in the linear and saturated regime according to the equation Isp = (W /L)Cu(Vg—
V1 )Vp for linear and Isp = (W /2L)C;u(Vg—Vr)? for saturation, where Igp is the drain current, W
and L are channel width and length, respectively. C; (C; = 14.9 nF) is the capacitance per unit
area of the gate dielectric layer and Vg and Vr are the gate voltage and threshold voltage,
respectively. V-V of the device was determined from the relationship between the square root

of Igp at the saturated regime.
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Synthesis of boronic ester intermediates
2-(benzofuran-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1):

To a 50 mL two-neck round-bottom flask containing benzofuran (2.00 g, 17 mmol), dry THF (20
mL) was added and the resulting solution was cooled to -78 °C (dry ice/acetone). To this
solution, n-BuLi (2.0 M, 6.8 mL, 17 mmol) was added drop wise. After stirring for 30 minutes at
-78 °C, the temperature of the reaction mixture was allowed to reach RT and stirred at RT for 1 h
followed by cooling down to -78 °C. 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (4
mL, 23 mmol) was added drop wise to the reaction mixture at -78 °C and the resulting solution
was warmed to RT and stirred at RT overnight. After completion of the reaction monitored using
TLC, the reaction was quenched at -78 °C by adding saturated NH4CI solution and extracted
three times with ethyl acetate (3x50 mL). The combined ethyl acetate extract was dried over
anhydrous Na,SO, and the solution was filtered and concentrated under reduced pressure. The
residue obtained was purified using column chromatography to yield the title compound as

yellow solid (Yield: 96%, 4.00 g).

'H NMR (500 MHz, 5 ppm): 7.63 (d, J = 7.78 Hz, 1H), 7.57 (d, J = 8.39 Hz, 1H), 7.40 (s, 1H),
7.36-7.32 (m, 1H), 7.23 (t, ] = 7.17 Hz, 1H), 1.39 (s, 12H).

Similar procedure was adopted to synthesize 2-(5-hexylthiophen-2-yl)-4,4,5,5-tetramethyl-1,3,2-
dioxaborolane (Yellow liquid, Yield: 68%) and 4,4,5,5-tetramethyl-2-(4-
(trifluoromethyl)phenyl)-1,3,2-dioxaborolane (Off-white solid, Yield: 83%).

2-(5-hexylthiophen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3): 'H NMR (500 MHz, &
ppm): 7.49-7.44 (m, 1H), 7.47 (d, J = 3.02 Hz, 1H), 6.86 (d, J = 3.02 Hz, 1H), 2.88-2.81(m, 2H),
1.73-1.64 (m, 2H), 1.41-1.25 (m, 18H), 0.91-0.85 (m, 3H).

4,4,5,5-tetramethyl-2-(4-(trifluoromethyl)phenyl)-1,3,2-dioxaborolane (4): 'H NMR (500 MHz, &
ppm): 7.91 (d, J = 8.80 Hz, 2H), 7.61 (d, J = 8.24 Hz, 2H), 1.35 (s, 12H).

4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)triphenylamine (2):

In a 50 mL two-neck round-bottom flask, 4-bromo-N,N-diphenylaniline (2.00 g, 6.1 mmol) was
dissolved in dry THF (20 mL) and the mixture was cooled down to -78 °C (dry ice/acetone). To
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this mixture, n-BuLi (2.0 M, 3.7 mL, 7.4 mmol) was added under N, atmosphere and stirred for
1 h at -78 °C followed by the drop wise addition of 2-isopropoxy-4.,4,5,5-tetramethyl-1,3,2-
dioxaborolane (1.40 g, 7.4 mmol). The reaction mixture was allowed to reach RT and stirred at
RT overnight. After the disappearance of the starting materials in TLC, reaction was quenched
by adding water (20 mL) and thus obtained aqueous solution was extracted with chloroform
(3x50 mL). The combined chloroform extract was dried over anhydrous Na,SO, and the solution
was filtered and concentrated under reduced pressure. The residue obtained was purified using

column chromatography to get the title compound as white solid (Yield: 61%, 1.40 g).

'H NMR (500 MHz, & ppm): 7.68-7.65 (m, 2H), 7.27-7.22 (m, 4H), 7.12-7.08 (m, 4H), 7.06-7.01
(m, 4H), 1.33 (s, 12H)

Synthesis of ethynyl intermediates

The synthetic precursors, 2-ethynylnaphthalene (5), 2-ethynylanthracene (6) and 1-ethynylpyrene
(7) were synthesized from their corresponding bromo derivatives. The corresponding bromo
derivatives were first reacted with acetylene reagents followed by the de-protection yielded the
required ethynyl precursors. Ethynyltrimethylsilane and 2-methyl-3-buten-2-o0l were used as
acetylene reagents for 2-bromonaphthalene, 2-bromoanthracene and I1-bromopyrene,

respectively. General synthetic procedure for the ethynylation and de-protection are given below.
2-bromoanthracene:

2-bromoanthracene was prepared in a two step procedure using 2-aminoanthraquinone as

synthetic precursor.

To a 500 mL two-neck round-bottom flask containing copper (II) bromide (20.00 g, 89.5 mmol)
dissolved in dry acetonitrile (100 mL), isopentyl nitrite (12.00 mL, 89.5 mmol) was added at 0
°C and the mixture was stirred for 30 minutes at 0 °C. The temperature of the reaction mixture
was allowed to reach RT, stirred at RT for 30 minutes followed by cooling down to 0 °C. To the
resultant solution, 2-Aminoanthraquinone (10.00 g, 44.7 mmol) dissolved in THF (150 mL) was
quickly added and the solution was stirred for 2 h at 0 °C. After completion of reaction, organic
solvents were removed by rotary evaporation to give a dark brown solid. To the above solid,

water (200 mL) was added and the resulting slurry was vacuum filtered. The residue obtained
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was thoroughly washed with water and dissolved in dichloromethane. The insoluble materials
were filtered and the dichloromethane layer was dried over anhydrous Na,SO,4. The
dichloromethane solution was filtered and concentrated under reduced pressure. The residue
obtained was purified using column chromatography to give 2-bromoanthraquinone as a yellow

solid (Yield: 31%, 4.00 g).

To a solution of 2-Bromoanthraquinone (8.50 g, 29.6 mmol) in isopropyl alcohol and THF
mixture (1:1, 200 mL) at 0 °C, NaBH, (6.70 g, 177 mmol) was added and the reaction mixture
was stirred at 0 °C for 3 h. The solution was then warmed to RT and additional NaBH, (3.35 g,
89 mmol) was added. The resulting solution was stirred at RT for 12 h followed by the addition
of water (10 mL). The resultant mixture was stirred at RT for an additional 12 h. After the
completion of the reaction, solvent was removed by rotary evaporation. To the residue obtained,
HCI (3M) was slowly added until the bubbling was ceased followed by the addition of additional
3M HCI (30 mL). The resulting solution was stirred under reflux conditions for 6 h and cooled
down to RT and concentrated under reduced pressure. The resultant suspension was filtered and
the obtained residue was dissolved in dichloromethane. The dichloromethane solution was dried
over anhydrous Na,SO, and filtered. The solution obtained was concentrated under reduced

pressure and the residue was purified using column chromatography to give the title compound

(Yield: 22%, 2.20 g).
Ethynylation of 2-bromonaphthalene and 2-bromoanthracene

To a two-neck 50 mL round-bottom flask, corresponding bromo derivative (10 mmol),
bis(triphenylphosphine)palladium(Il) dichloride (10 mol%) and Cul (10 mol%) were added and
fitted to a reflux condenser. The reaction vessel was evacuated and filled with N, gas. Freshly
distilled triethylamine (5 mL) was added to the reaction vessel and the resultant solution was
purged with N, gas for 15 minutes. Ethynyltrimethylsilane (15 mmol) was added drop wise to
the reaction mixture and the resultant mixture was heated to 40 °C and stirred at this temperature
overnight. After completion of the reaction monitored using TLC, insoluble materials were
removed by filtration through celite and the filtrate was concentrated and partitioned between
water and ethyl acetate. The ethyl acetate layer collected and the aqueous layer was washed with

ethyl acetate (3x20 mL). The combined ethyl acetate extract was dried over anhydrous Na,SO,
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and filtered. The solution obtained was concentrated and the residue was purified using column

chromatography to obtain the title compound.

Trimethyl(naphthalen-2-ylethynyl)silane (Yield: 80%, 1.5 g). (anthracen-2-ylethynyl)trimethyl
silane (Yield: 80%, 2.1 g).

Silyl de-protection of trimethyl(naphthalen-2-ylethynyl)silane and (anthracen-2-
ylethynyl)trimethylsilane:

To the solution of corresponding ethynyltrimethylsilane (6.5 mmol) in dichloromethane and
methanol mixture (1:1, 40 mL), potassium hydroxide (13 mmol) was added and the resultant
solution was stirred for 3 h at RT. After the complete disappearance of starting materials
monitored using TLC, the reaction mixture was poured into water and extracted with ethyl
acetate (3x20 mL). The combined organic extract was dried over anhydrous Na,SO, and filtered.
The solution obtained was concentrated and the residue was purified using column

chromatography to give the desired compound over 90% yield.

2-ethynylnaphthalene (5): '"H NMR (500 MHz, & ppm): 8.02 (s, 1H), 7.82-7.76 (m, 3H), 7.52-
7.47 (m, 3H), 3.14 (s, 1H).

2-ethynylanthracene (6): 'H NMR (500 MHz, & ppm): 8.39 (d, J = 3.5 Hz, 2H), 8.22 (s, 1H),
8.02-7.98 (m, 2H), 7.96-7.93.(m, 1H), 7.50-7.45 (m, 3H), 3.20 (s, 1H).

2-methyl-4-(pyren-1-yl)but-3-yn-2-ol:

To a two-neck 100 mL round-bottom flask, 1-bromopyrene (2.00 g, 7.1 mmol), 2-methyl-3-
buten-2-ol (4.78 g, 56.9 mmol), triphenylphosphine (0.75 g, 9.8 mmol), Cul (0.40 g, 2.13 mmol)
and dichloro[1,1’-bis(diphenylphosphino)ferrocene] palladium (II) dichloromethane complex
(1:1) (116 mg, 20 mol%) were added and fitted to a reflux condenser. The reaction vessel was
evacuated and filled with N, gas. Dry toluene (8 mL) and freshly distilled triethylamine (30 mL)
were added to the reaction vessel and the resultant solution was purged with N, gas for 15
minutes. The resultant mixture was heated to 80 °C and stirred at this temperature overnight.
After completion of the reaction, reaction mixture was cooled to RT and partitioned between
water and ethyl acetate. Ethyl acetate layer was collected and the aqueous layer was washed with

ethyl acetate (3x20 mL). The combined ethyl acetate extract was dried over anhydrous Na,SO,
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and filtered. The solution obtained was concentrated and the residue was purified using column

chromatography to obtain the desired compound (Yield: 84%, 1.7 g).

'H NMR (500 MHz, § ppm): 8.51-8.48 (m, 1H), 8.22-8.13 (m, 3H), 8.09-8.06 (m, 3H), 8.03-7.99
(m, 2H), 2.30-2.27 (m, 1H), 1.80 (s, 6H).

1-ethynylpyrene (7):

2-methyl-4-(pyren-1-yl)but-3-yn-2-ol (1.50 g, 5.27 mmol) and KOH (0.65 g, 11 mmol) were
dissolved in isopropanol (30 mL) in a 50 mL two-neck round-bottom flask and the mixture was
heated to 80 °C and stirred at this temperature for 3 h. After the disappearance of the starting
materials monitored using TLC, the reaction mixture was cooled RT and poured into water. The
aqueous solution was extracted three times with ethyl acetate (3x50 mL). The combined organic
extract was dried over anhydrous Na,SO, and filtered. The solution obtained was concentrated
and the residue was purified using column chromatography to yield the title compound (Yield:

93%, 1.1 g).

'"H NMR (500 MHz, 6 ppm): 8.60-8.57 (m, 1H) 8.24-8.15 (m, 4H), 8.11-8.08 (m, 2H), 8.05-8.01
(m, 2H), 3.62 (s, 1H).

Synthesis of diketopyrrolopyrrole (DPP) intermediates
2,5-Bis(2-ethylhexyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4c]pyrrole-1,4(2H,5H)-dione!2:

In a two-neck round-bottom flask, 3,6-dithiophen-2-yl-2,5-dihydro- pyrrolo[3,4-c]pyrrole-1,4-
dione (20.00 g, 66.66 mmol) and anhydrous K,CO; (29.85 g, 216 mmol) were dissolved in dry
DMF (400 mL) and this solution was purged with N, gas for 30 minutes. The resultant solution
was stirred under heating at 120 °C for 1 h followed by the drop wise addition of 2-Ethylhexyl
bromide (38.62 g, 200 mmol) and catalytic amount of 18-crown-6. The temperature of the
reaction mixture was raised to 150 °C and stirred overnight at 150 °C. After the completion of
the reaction, the reaction mixture was cooled to RT and partitioned between chloroform and
water. The chloroform layer was collected and the aqueous layer was washed with CHCl; (3x50
mL). The combined organic extract was dried over anhydrous Na,SO, and filtered. The solution
obtained was concentrated and the residue was purified using column chromatography to yield

the desired compound as a dark red solid (Yield: 22%, 8.0 g).

510



3,6-bis(5-bromothien-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dion'2:

In a 250 mL two-neck round-bottom flask, 2,5-Bis(2-ethylhexyl)-3,6-di(thiophen-2-
yl)pyrrolo[3.4c]pyrrole-1,4(2H,5H)-dione (4.00 g, 7.62 mmol) was dissolved in chloroform (80
mL) and this solution was cooled to 0 °C. After stirring at 0 °C for 20 minutes, NBS (2.88 g,
16.7 mmol) was added portion wise over 30 minutes and the resultant mixture was stirred for
another 30 minutes to complete the reaction. After the completion of reaction, solvent was
removed under reduced pressure and the resulting solid was purified using column

chromatography to yield the target compound (Yield: 78%, 4.1 g).

3-(5-(benzofuran-2-yl)thiophen-2-yl)-6-(5-bromothiophen-2-yl)-2,5-bis(2 ethylhexyl)pyrrolo
[3,4-c] pyrrole-1,4(2H,5H)-dione (A):

To a 250 mL two-neck round-bottom flask, 3,6-bis(5-bromothiophen-2-yl)-2,5-bis(2-ethylhexyl)
pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (2.00 g, 2.93 mmol), 2-(benzofuran-2-yl)-4,4,5,5-
tetramethyl-1,3,2-dioxaborolane (0.71g, 2.93 mmol), Pd(PPhs), (67 mg, 5 mol%) and Na,CO;
(4.95 g, 460 mmol) were added and fitted to reflux condenser. The reaction vessel was evacuated
and filled with N, gas. Dry toluene (70 mL) was added to the flask and the mixture was purged
with N, gas for 30 minutes. A solution of H,O and EtOH mixture (2:1, 44.5 mL) was added to
the reaction mixture and the mixture was heated to 90 °C and stirred at this temperature
overnight. After completion of the reaction, reaction mixture was cooled to RT and diluted with
ethyl acetate and water. The organic layer was collected and the aqueous layer was extracted
with ethyl acetate (3x50 mL). The combined ethyl acetate extract was dried over anhydrous
Na,SO, and filtered. The solution obtained was concentrated and the residue was purified using

column chromatography to obtain the desired compound (Yield: 28%, 0.6 g).

'H NMR (500 MHz, & ppm): 8.98 (d, J = 4.15 Hz, 1H), 8.65 (d, ] = 4.15 Hz, 1H), 7.60-7.56 (m,
2H), 7.51 (d, J = 8.06 Hz, 1H), 7.36-7.30 (m, 1H), 7.26 (m, 1H), 7.22 (d, J = 4.15 Hz, 1H), 7.05
(s, 1H), 4.08-3.93 (m, 2H), 1.96-1.82 (m, 2H), 1.41-1.27 (m, 16H), 0.91-0.86 (m, 12H). 13C
NMR (125 MHz, § ppm): 161.6, 161.3, 154.9, 149.9, 140.1, 138.8, 138.1, 136.7, 135.2, 135.1,
131.4, 129.4, 128.8, 128.5, 125.4, 125.4, 123.5, 121.2, 118.7, 111.2, 108.3, 103.7, 46.0, 39.2,
39.1,30.3,30.2, 29.7, 28.5, 28.3, 23.6, 23.6, 23.1, 23.0, 14.1, 14.0, 10.5.

Synthesis of target DPP-derivatives
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3-(5-(benzofuran-2-yl)thiophen-2-yl)-6-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)-2,5-bis(2-
ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (BFTPADPP):

To a 50 mL two-neck round-bottom flask, 1 (0.20 g, 0.277 mmol), N,N-diphenyl-4-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (0.20 g, 0.55 mmol), Pd(PPh;), (6 mg, 5 mol%) and
Na,COj3 (0.47 g, 4.4 mmol) were added and fitted to a reflux condenser. The reaction vessel was
evacuated and filled with N, gas. Freshly degassed toluene (20 mL) was added to the reaction
vessel followed by the addition of H,O and EtOH mixture (2:1, 10.5 mL). The resulting solution
was purged with N, gas for 30 minutes and heated to 90 °C and stirred at this temperature
overnight. Reaction progress was monitored using TLC. After completion of the reaction,
reaction mixture was cooled to RT and partitioned between with chloroform and water. The
choloform layer was collected and the aqueous layer was extracted with chloroform (3x10 mL).
The combined chloroform extract was dried over anhydrous Na,SO, and filtered. The solution
obtained was concentrated. The residue obtained was washed several times with pure methanol

and re-crystallized in toluene to yield the title compound (Yield: 89%, 0.22 g).

'H NMR (500 MHz, 6 ppm): 9.05 (d, J = 4.27 Hz, 1H), 8.95 (d, J = 4.12 Hz, 1H), 7.60-7.56 (m,
2H), 7.54-7.51 (m, 3H), 7.38 (d, J = 4.27 Hz, 1H), 7.35-7.27 (m, 6H), 7.16-7.13 (m, 4H), 7.11-
7.04 (m, 5H), 4.13-4.04 (m, 4H), 1.99-1.91 (m, 2H), 1.43-1.26 (m, 16H), 0.94-0.84 (m, 12H);
BC NMR (125 MHz, & ppm): 161.8, 161.5, 154.9, 150.3, 150.1, 148.6, 147.0, 140.5, 138.6,
137.6, 137.4, 136.0, 129.7, 129.4, 128.9, 127.6, 126.9, 126.4, 125.4, 125.2, 125.0, 123.7, 123.5,
122.7,121.1, 111.2, 108.8, 107.8, 103.4, 46.0, 39.2, 39.1, 30.3, 29.7, 28.5, 23.6, 23.1, 14.0, 10.6,
10.5.

ESI-HRMS (Positive mode, m/z): 884.38991 (M+H™), Calc. for Css Hsg O3 N3 S; is 884.39141.

Similar procedure was adopted to synthesize 3-(5-(benzofuran-2-yl)thiophen-2-yl)-2,5-bis(2-
ethylhexyl)-6-(5-(4 (trifluoromethyl)phenyl)thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)
dione (BFTFDPP) (Yield: 80%, 0.17 g) and 3-(5-(benzofuran-2-yl)thiophen-2-yl)-2,5-bis(2-
ethylhexyl)-6-(5'-hexyl-2,2'-bithiophen-5-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione
(BFHTDPP) (Yield: 84%, 0.20 g)

BFTFDPP: 'H NMR (500 MHz, & ppm): 9.01 (d, ] = 4.12 Hz, 1H), 8.94 (d, J = 4.12 Hz, 1H),
7.79-7.79 (m, 2H), 7.77-7.66 (m, 2H), 7.61-7.58 (m, 2H), 7.55-7.51 (m, 2H), 7.39-7.32 (m, 1H),
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7.26 (s, 1H), 7.07 (s, 1H), 4.14-4.04 (m, 4H), 1.98-1.90 (m, 2H), 1.46-1.26 (m, 16H), 0.95-0.86
(m, 12H); 3C NMR (125 MHz, & ppm): 161.7, 161.5, 154.9, 149.9, 147.2, 140.0, 138.1, 136.7,
136.5, 136.4, 130.1, 130.0, 129.4, 128.8, 126.2, 125.7, 125.4, 125.34, 123.5, 121.2, 111.2, 108.8,
108.6, 103.7, 46.0, 39.3, 30.3, 28.6, 28.5, 23.7, 23.1, 14.1, 10.6, 10.5.

ESI-HRMS (Positive mode, m/z): 785.30386 (M+H™), Calc. for C4s Hys O3 N, F3 S, is
785.30530.

BFHTDPP: 'H NMR (500 MHz, 6 ppm): 8.97 (dd, J = 10.99 Hz, 2H), 7.60-7.57 (m, 2H), 7.5-
7.50 (m, 1H), 7.35-7.31 (m, 1H), 7.26 (m, 1H), 7.24 (d, J = 4.12 Hz, 1H), 7.15 (d, J = 3.66 Hz,
1H), 7.05 (s, 1H), 6.76-6.74 (m, 1H), 4.14-4.00 (m, 4H), 2.85-2.80 (m, 2H), 1.97-1.90 (m, 2H),
1.73-1.67 (m, 2H), 1.43-1.26 (m, 22H), 0.94-0.86 (m, 15H); *C NMR (125 MHz, 6 ppm): 161.7,
161.5, 154.9, 150.1, 147.9, 143.8, 140.2, 138.8, 137.4, 137.2, 136.0, 133.5, 129.7, 128.9, 127.3,
1254, 125.2, 125.1, 124.0, 123.5, 121.1, 111.2, 108.1, 103.5, 46.0, 39.2, 31.5, 30.3, 28.7, 28.5,
23.7,23.1,22.5, 14.1, 10.6.

ESI-HRMS (Positive mode, m/z): 807.36672 (M+H™), Calc. for C45 Hs9 O3 N; S5 is 807.36823.

The target DPP derivatives BFPhDPP. BFNaDPP. BFAnDPP and BFPyDPP were synthesized
from 1 and the corresponding ethynyl precursors by adopting Sonogashira coupling reaction

protocol. General procedure for their synthesis is given below.

To a 100 mL two-neck round-bottom flask, 1 (1 mmol), Cul (7 mol%), Pd(PPh;), (2 mol%) and
the corresponding acetylene compound were added and fitted to a reflux condenser. The reaction
vessel was evacuated and filled with N, gas. Dry toluene (30 mL) to and dry diethylamine (2
mL) were added to the reaction vessel and the resulting solution was purged with N, gas for 20
minutes. The reaction mixture was heated to reflux temperature and stirred at this temperature
overnight. After completion of reaction monitored using TLC, water (50 mL) was added to the
reaction mixture and the resulting solution was extracted with chloroform (3x50 mL). The
combined organic extract was subjected to serial washings with water followed by brine solution.
Thus obtained chloroform solution was dried over anhydrous Na,SO, and filtered. The solution

obtained was concentrated and the residue was purified using column chromatography.

3-(5-(benzofuran-2-yl)thiophen-2-yl)-2.5-bis(2-ethylhexyl)-6-(5-(phenylethynyl)thiophen-2-
yl)pyrrolo[3.4-c]pyrrole-1.4(2H.5H)-dione (BFPhDPP) (Yield: 85%, 0.17 g)
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BFPhDPP: 'H NMR (500 MHz, 6 ppm): 9.02 (d, ] = 4.12 Hz, 1H), 8.91(d, J = 4.12 Hz, 1H),
7.62-7.51 (m, 5H), 7.41-7.37 (m, 4H), 7.34 (t, J = 8.0 Hz, 1H), 7.28 (s, 1H), 7.07 (s, 1H), 4.14-
4.00 (m, 4H), 1.98-1.89 (m, 2H), 1.45-1.25 (m, 16H), 0.95-0.86 (m, 12H); 3C NMR (125 MHz,
d ppm): 161.6, 161.6, 161.5, 140.6, 139.3, 135.5, 135.3, 132.9, 132.8, 131.5, 130.8, 130.5, 129.8,
129.0, 128.6, 128.5, 128.3, 122.3, 108.7, 108.0, 97.7, 97.5, 82.3, 46.0, 45.9, 39.1, 39.1, 30.1,
30.1, 28.3, 23.5, 23.0, 14.0, 10.5.

ESI-HRMS (Positive mode, m/z): 741.31702 (M+H™), Calc. for C4 Hgo O3 N, S, is 741.31791.

3-(5-(benzofuran-2-yl)thiophen-2-yl)-2.5-bis(2-ethylhexyl)-6-(5-(naphthalen-2-
ylethynyl)thiophen-2-yl)pyrrolo[3.4-c]pyrrole-1.4(2H.5H)-dione (BFNaDPP) (Yield: 86%, 0.19
g

BFNaDPP: 'H NMR (500 MHz, & ppm): 9.02 (d, J = 4.12 Hz, 1H), 8.94 (d, J = 4.12 Hz, 1H),
8.09 (s, 1H), 7.86-7.83 (m, 3H), 7.61-7.57 (m, 3H), 7.54-7.51 (m, 3H), 7.44-7.42 (m, 1H), 7.36-
7.32 (m, 1H), 7.28 (s, 1H), 7.07 (s, 1H), 4.13-4.02 (m, 4H), 1.98-1.91 (m, 2H), 1.44-1.27 (m,
16H), 0.95-0.88 (m, 12H); 3C NMR (125 MHz, & ppm): 161.6, 161.5, 154.9, 149.9, 139.9,
139.1, 138.1, 136.7, 135.5, 133.1, 133.0, 132.9, 131.7, 130.6, 129.4, 128.8, 128.4, 128.2, 127.9,
127.9, 127.8, 127.8, 127.1, 126.8, 125.4, 125.4, 123.5, 121.1, 119.5, 111.2, 108.9, 108.6, 103.7,
98.2,82.7,46.1,46.0, 39.2, 39.1, 30.3, 30.1, 29.7, 29.6, 28.5, 28.3, 23.6, 23.5, 23.1, 14.1, 10.5.

ESI-HRMS (Positive mode, m/z): 791.33216 (M+H™), Calc. for Cso Hs; O3 N, S; is 791.33356.

3-(5-(anthracen-2-ylethynyl)thiophen-2-yl)-6-(5-(benzofuran-2-yl)thiophen-2-yl)-2.5-bis(2-
ethylhexyl)pyrrolo[3.4-c]pyrrole-1.4(2H.5H)-dione (BFAnDPP) (Yield: 87%, 0.20 g).

BFAnDPP: 'H NMR (500 MHz, 6 ppm): 9.04-9.02 (m, 1H), 8.96-8.94 (m, 1H), 8.43-8.39 (m,
2H), 8.27-8.24 (m,1H), 8.04-7.97 (m, 3H), 7.61-7.58 (m, 2H), 7.54-7.48 (m, 4H), 7.46-7.44 (m,
1H), 7.36-7.32 (m, 1H), 7.29-7.27 (m, 1H), 7.08-7.05 (m, 1H), 4.13-4.03 (m 4H), 1.99-1.91 (m,
2H), 1.45-1.28 (m, 16H), 0.96-0.88 (m, 12H); 3C NMR (125 MHz, & ppm): 161.6, 161.5, 155.0,
154.8, 149.9, 136.7, 135.5, 133.0, 132.4, 132.1, 130.7, 130.7, 128.8, 128.5, 128.3, 128.2, 126.8,
126.6, 126.3, 125.9, 125.4, 125.3, 123.5, 121.2, 119.0, 111.2, 108.7, 103.7, 98.6, 98.0, 92.5, 83.3,
46.1, 46.1,39.2, 39.1, 30.3, 30.1, 28.5, 28.3, 23.6, 23.1, 14.1, 10.5.

ESI-HRMS (Positive mode, m/z): 841.34820 (M+H™), Calc. for Cs4 Hs; O3 N, S; is 841.34921.
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3-(5-(benzofuran-2-yl)thiophen-2-yl)-2.5-bis(2-ethylhexyl)-6-(5-(pyren-1 ylethynyl)thiophen-2-
yl)pyrrolo[3.4-c]pyrrole-1.4(2H.5H)-dione (BFPyDPP) (Yield: 91%, 0.22 g).

BFPyDPP: 'H NMR (500 MHz, & ppm): 9.01 (dd, J = 18.76 Hz, 2H), 8.58 (d, J = 9.00 Hz, 1H),
8.27-8.19 (m, 4H), 8.16-8.10 (m, 2H), 8.07-8.03 (m, 2H), 7.60-7.57 (m, 2H), 7.55-7.50 (m, 2H),
7.36-7.31 (m, 1H), 7.26 (m, 1H), 7.05 (s, 1H), 4.15-4.03 (m, 4H), 2.01-1.92 (m, 2H), 1.48-1.28
(m, 16H), 0.98-0.88 (m, 12H); 3C NMR (125 MHz, é ppm): 161.5, 161.4, 154.9, 149.9, 139.7,
139.0, 138.0, 136.7, 135.6, 132.9, 131.8, 131.7, 131.1, 130.9, 130.7, 129.4, 128.8, 128.6, 128.5,
127.1, 126.3, 125.9, 125.8, 125.6, 125.4, 125.3, 125.1, 124.5, 124.3, 124.1, 123.5, 121.1, 116.5,
111.2, 108.8, 108.6, 103.6, 97.4, 88.0, 46.1, 46.0, 39.2, 39.2, 30.3, 30.2, 28.5, 28.4, 23.6, 23.1,
14.1, 10.5.

ESI-HRMS (Positive mode, m/z): 865.34798 (M+H™), Calc. for Csq Hs; O3 N; S; is 865.34921.
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Fig. S25. Normalized emission spectra of the synthesized DPP-derivatives in various solvents
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Fig. S26. Emission spectra of the synthesized DPP-derivatives in their thin film state
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Fig. S27. TCSPC data and their corresponding fit curves of the synthesized DPP-derivatives
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Table S1: HOMO (H) energy, LUMO (L) energy and HOMO-LUMO gap (Eq.1), ground state dipole
moment (), transition dipole moments (jg), adiabatic electron affinity (EA,) and adiabatic ionization
potential (IP,) of the DPP-derivatives calculated at B3LYP/6-31G (d,p) level.

Material code | H L Enr | Mg | Mge | TPy | EA,
(eV) | (eV) | (eV) (eV) | (eV)
BFTPADPP | -4.68 | -2.61 | 2.07 | 3.25|5.99 | 548 | -1.71
BFHTDPP | -4.76 | -2.70 | 2.06 | 2.02 | 5.46 | 5.70 | -1.72
BFTFDPP | -497|-286| 2.11 |3.43|521|594|-191
BFPhDPP | -485|-2.79| 2.06 | 0.74 | 5.71 | 5.79 | -1.83
BFNaDPP | -4.84|-2.79|-2.05|1.08 |6.08 | 5.74 | -1.88
BFAnDPP | -483|-2.81| 202 [1.34|646| 5.68 |-1.93
BFPyDPP -4.80 | -2.81 | 1.99 | 1.54 | 6.66 | 5.63 | -1.95

Table S2. Absorption maxima (Ap.y), oscillator strength (f), main orbital transitions and coefficients of
wave functions (CI) of the DPP-derivatives calculated at B3LYP/6-31G (d,p) in chloroform solvent
phase.

Material code | Amax(nm) | f Cl

BFTPADPP 678 1.858 HOMO-LUMO (0.7054)
BFHTDPP 657 1.674 HOMO—-LUMO (0.7103)
BFTFDPP 638 1.549 HOMO—-LUMO (0.7102)
BFPhDPP 658 1.798 HOMO—-LUMO (0.7099)
BFNaDPP 666 1.973 HOMO-LUMO (0.7090)
BFAnDPP 680 2.152 HOMO—-LUMO (0.7081)
BFPyDPP 697 2.2427 HOMO—-LUMO (0.7067)

Table S3: Absorption maxima (M), oscillator strength (f), main orbital transitions, coefficients of wave
functions (CI) of the DPP-derivatives calculated at M062X/6-31G (d,p) level in chloroform solvent
phase

Material code Amax(nm) f CI

BFTPADPP 579 1.6013 HOMO->LUMO (97%)
BFHTDPP 577 1.801 HOMO->LUMO (93%)
BFTFDPP 564 1.4845 HOMO->LUMO (98%)
BFPhDPP 577 1.692 HOMO->LUMO (97%)
BFNaDPP 580 1.827 HOMO—LUMO (0.6955)
BFAnDPP 585 1.971 HOMO—LUMO (0.6885)
BFPyDPP 594 2.0779 HOMO->LUMO (94%)
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Table S4: Absorption maxima (M), oscillator strength (f), main orbital transitions, coefficients of wave
functions (CI) calculated at cam-B3LYP/6-31G (d,p) level in chloroform solvent phase.

Material code | Amax(nm) f CI
BFTPADPP 575 1.6181 | HOMO->LUMO (96%)
BFHTDPP 572 1.7997 | HOMO->LUMO (90%)
BFTFDPP 560 1.5029 | HOMO->LUMO (96%)
BFPhDPP 574 1.7151 | HOMO->LUMO (96%)
BFNaDPP 577 1.850 | HOMO—LUMO (0.6898)
BFAnDPP 581 1.989 | HOMO—LUMO (0.6811)
BFPyDPP 590 2.1023 | HOMO->LUMO (91%)
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Fig. S28. Theoretically generated UV-visbile absorption spectra of synthesized DPP-derivatives
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Fig. S29. Cylcic voltagramms represent the reversible reduction behaviour of the synthesized DPP-

derivatives
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