Supporting Information for

Novel polyamides with fluorene-based triphenylamine: electrofluorescence and electrochromic properties

List of Contents for supporting Information:

Fig. S1 IR spectra of dinitro intermediate compound (a) and diamine monomer (b)1
Fig. S2 IR spectrum of polyamide 4a2
Fig. S3 IR spectra of polyamide 4b, 4c, 4d, 4e3
Fig. S4 H-H COSY spectra of diamine 2 in DMSO-d ₆ 4
Fig. S5 ¹ H NMR spectra of the polyamide 4a, 4b, 4d, 4e in DMSO-d ₆ 5
Fig. S6 WAXD pattern of polyamide films6
Fig. S7 UV-vis absorption spectra of polyamides (a) solution and (b) film7
Fig. S8 PL spectra of polyamides in NMP solutions (1×10 ⁻⁵ M)8
Fig. S9 Calculated molecular orbitals of the model compounds (TD-DFT method at the B3LYP/6-31G (d, p))9
Fig. S10 Cyclic voltammetric diagrams of polyamide (a) 4a, (b) 4b, (c) 4d, (d) 4e in CH ₃ CN containing 0.1M TBAP at
scan rate= 50 mV s ⁻¹ 10
Fig. S11 Calculation of optical switching time at 860nm at the applied potential of polyamide 4c thin film on the
ITO-coated glass substrate in 0.1 M TBAP/CH ₃ CN11

Fig. S1 IR spectra of dinitro intermediate compound (a) and diamine monomer (b).

Fig. S2 IR spectrum of polyamide 4a.

Fig. S3 IR spectra of polyamide 4b, 4c, 4d, 4e.

Fig. S4 H-H COSY spectra of diamine 2 in DMSO-*d*₆.

Fig. S5 ¹H NMR spectra of the polyamide 4a, 4b, 4d, 4e in DMSO-*d*₆.

Fig. S6 WAXD pattern of polyamide films.

Fig. S7 UV-vis absorption spectra of polyamides (a) solution and (b) film.

Fig. S8 PL spectra of polyamides in NMP solutions $(1 \times 10^{-5} \text{ M})$.

Fig. S9 Calculated molecular orbitals of the model compounds (TD-DFT method at the B3LYP/6-31G (d, p)).

Fig. S10 Cyclic voltammetric diagrams of polyamide (a) 4a, (b) 4b, (c) 4d, (d) 4e in CH₃CN containing 0.1M TBAP at scan rate= 50 mV s⁻¹.

Fig. S11 Calculation of optical switching time at 860nm at the applied potential of polyamide 4c thin film on the ITO-coated glass substrate in 0.1 M TBAP/CH₃CN.