Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Figure S1 a) SEM image of MnO_2 nanotubes, b) TEM image of MnO_2 nanotubes

Figure S2 a) XRD analysis plot of the pre-synthesised MnO₂, b) EDX spectra of PGM, c) EDX spectra of PGM- HCl, d) A PGM-HCl hydrogel, e) A PGM hydrogel

Figure S3 Charge Discharge plots at different current densities of a) PGM, b) PGM-HCl, c) PGM-HCl-2

Reported By	Composite	Specific Capacitance	Binders used for electrode preparation	Capacitance retention
Our study	PGM-HCl	955 Fg ⁻¹ at 1 Ag ⁻¹	No	89% after 1000 cycles
	PGM-HCl-2	676.66 Fg ⁻¹ at 1 Ag ⁻¹		98% after 1000 cycles
	PGM	426 Fg ⁻¹ at 1 Ag ⁻¹		86% after 1000 cycles
Wang et al ¹	Sulfonated Graphene/MnO ₂ /PA NI	276 Fg ⁻¹ at 1 Ag ⁻¹	Yes	88.3% after 3000 cycles
Yu et al ²	Graphene/MnO ₂ /PA NI (on 2D- graphene sheets)	755 Fg ⁻¹ at 0.5 Ag ⁻¹	Yes	87% after 1000 cycles
Ge et al ³	Graphene/MnO ₂	450 Fg ⁻¹ at 2 mV s ⁻¹	No	90% after 10000 cycles
Zhou et al ⁴	Graphene/MnO ₂ films	446 Fg ⁻¹ at 5 mVs ⁻¹	Yes	96% after 1000 cycles
Rakhi et al ⁵	CNT/Graphene/MnO	308 Fg ⁻¹ at 20 mVs ⁻¹	Yes	90% after 5000 cycles
Yu et al ⁶	3D Graphene network/PANI	751.3 Fg ⁻¹ at 1 Ag ⁻¹	No	93.2% after 1000 cycles
Zhou et al ⁷	Graphene/PANI	250 Fg ⁻¹ at 0.5 Ag ⁻¹	Yes	73.7% after 1000 cycles
Wu et al ⁸	Graphene/Mn ₃ O ₄	271.5 Fg^{-1} at 0.1 Ag^{-1}	Yes	100% after 20000 cycles
Raj et al ⁹	Graphene/Mn ₃ O ₄	312 Fg ⁻¹ at 0.5 mA cm ⁻²	Yes	76% after 1000 cycles

Table S1: Comparison of our samples with the existing composites of Graphene/PANI/Mn₃O₄ orMnO₂

References

- 1. G. Wang, Q. Tang, H. Bao, X. Li and G. Wang, J. Power Sources, 2013, 241, 231, 238.
- 2. L. Yu, M. Gan, L. Ma, H. Huang, H. Hu, Y. Li, Y. Tu, C. Ge, F. Yang and J. Yan, *Syn. Metals*, 2014, **198**, 167-174.
- 3. J. Ge, H.-B. Yao, W. Hu, X.-F. Yu, Y.-X. Yan, L.-B. Mao, H.-H. Li, S.-S. Li and S.-H. Yu, *Nano Energy*, 2013, **2**, 505-513.
- 4. H. Zhou, X. Yang, J. Lv, Q. Dang, L. Kang, Z. Lei, Z. Yang, Z. Hao and Z.-H. Liu, *Electrochim. Acta*, 2015, **154**, 300-307.
- 5. R. B. Rakhi, W. Chen, D. Cha and H. N. Alshareef, Adv. Energy Mater., 2012, 2, 381-389.
- 6. M. Yu, Y. Ma, J. Liu and S. Li, Carbon, 2015, 87, 98-105.
- 7. S. Zhou, H. Zhang, Q. Zhao, X. Wang, J. Li and F. Wang, Carbon, 2013, 52, 440-450.
- Y. Wu, S. Liu, H. Wang, X. Wang, X. Zhang and G. Jin, *Electrochim. Acta*, 2013, 90, 210-218.
- 9. B. G. S. Raj, R. N. R. Ramprasad, A. M. Asiri, J. J. Wu and S. Anandan, *Electrochim. Acta*, 2015, **156**, 127-137.