Supporting Information

Synthesis of new chiral lactam-fused pyridine derivatives

Tetsuya Sengoku,^a Yusuke Murata,^b Chihiro Suzuki,^a Masaki Takahashi^a and Hidemi Yoda*^{a,b}

^aDepartment of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3–5–1 Johoku, Naka–

ku, Hamamatsu 432–8561, Japan.

^bGraduate School of Science and Technology, Shizuoka University, 3–5–1 Johoku, Naka-ku,

Hamamatsu 432–8561, Japan.

E-mail: tchyoda@ipc.shizuoka.ac.jp

The following data are included in this material:

General methods	S2
Synthesis of C_2 -symmetric pyrrolo[3,4– <i>b</i>]pyridines 2 from chiral diols 1 (Table S1)	S3
Characterization of 2c (Figure S1)	S4
Experimental procedures and characterization data	S5–S18
HPLC Chromatographic data	S19–S27
Copies of ¹ H and ¹³ C NMR spectra	S28–S57

General methods:

All solvents and reagents were of reagent grade quality from Wako Pure Chemicals and Tokyo Chemical Industry (TCI), and used without further purification. Methanol (MeOH) was dried over MS3Å prior to use. Phenylalanine-derived tetramic acid,^[1] leucine-derived tetramic acid,^[2] enamines **6a**,^[3] **6b**,^[4] **6c**,^[5] and **6d**^[6] were synthesized according to the literature. All new compounds were characterized by NMR, IR, and elemental analysis. The ¹H and ¹³C nuclear magnetic resonance (NMR) spectra operating at the frequencies of 300 and 75 MHz, respectively, were recorded on a JEOL JNM-AL300 spectrometer in chloroform–d (CDCl₃) unless otherwise noted. Chemical shifts are reported in parts per million (ppm) relative to TMS and the solvent used as internal standards, and the coupling constants are reported in hertz (Hz). Optical rotations were measured in 1 dm path length cell of 2 mL capacity using a JASCO Model DIP-1000 polarimeter at a wavelength of 589 nm. Reactions were monitored by thin layer chromatography (TLC) using 0.25 mm Merck silica gel 60-F254 precoated silica gel plates by irradiation with UV light and/or by treatment with a solution of phosphomolybdic acid in EtOH followed by heating. Column chromatography was performed on Kanto Chemical silica gel 60N eluting with the indicated solvent system. Melting points were measured with a Yanaco MP-S3 micro melting point apparatus. Fourier transform infrared (FTIR) spectra were recorded on a JASCO FT/IR-550 spectrometer. Elemental analyses were performed by JSL Model JM 10 instruments.

Synthesis of C₂-symmetric lactam–fused pyridines 2 from chiral diols 1:

T 11 C1	D	C 1 · 1	1. 1 4	1	•	1.
Table NL	Reaction	of chiral	diols	with	ammoniiim	salts
Tuble D1.	iteaction	or ennui		** 1011	unninnunn	buito.

Entry	1	NH ₄ OAc	<i>T</i> [°C]	<i>t</i> [h]	2 ([%])	ratio ^a	3 ([%])	ratio ^a
		[equiv.]				(2 : <i>epi</i> - 2)		(3 : <i>meso</i> - 3)
1	1a	1	r.t.	48	2a (0)	_	3a (0)	_
2	1a	1	100	11	2a (62)	53:47	3a (0)	_
3	1b	2	100	11	2b (<48)	66 : 34	3b (18)	b
4	1b	50	100	1	2b (trace)	_	3b (62)	35 : 65
5	1b	50	90	1	2b (trace)	_	3b (53)	51:49
6	1b	50	80	1.5	2b (trace)	_	3b (46)	55:45
7	1b	50	70	3.5	2b (trace)	_	3b (60)	49:51
8	1c	50	100	1	2c (trace)	_	3c (43)	63:37
9	1c	50	70	9	2c (trace)	_	3c (44)	61 : 39

^a Diastereomeric ratios were determined by ¹H NMR spectroscopy. ^b Not determined.

Characterization of 2c:

Figure S1. NMR spectra for **2c**. (a) ¹H NMR spectrum (300 MHz, CDCl₃, 2.5-7.6 ppm). (b) ¹³C NMR spectrum (300 MHz, CDCl₃, 120-175 ppm). Multiplicities were assigned by DEPT experiment.

Experimental procedures and characterization data:

Synthesis and characterization of 4a^[7]

To a solution of phenylalanine-derived tetramic acid (500 mg, 2.65 mmol) was added benzaldehyde (845 mg, 7.95 mmol) and conc. hydrochloric acid (10 drops) at room temperature. After stirring the mixture for 30 min, the resulting precipitate was filtered, washed with hexane and dried in vacuo to give 4a (691 mg, 94%, major isomer/minor isomer = 4/1 in CDCl₃) as a yellow solid: $R_f = 0.40$ (silica gel, hexane/AcOEt = 1/1); M.p. 175–177 °C; $[\alpha]_D^{27}$ –334 (c 0.570, CHCl₃); IR (KBr) 3233 (N–H), 1687 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.46-8.42 (m, 2H, minor isomer, ArH), 8.41-8.36 (m, 2H, major isomer, ArH), 7.80 (s, 1H, minor isomer, CH), 7.79 (s, 1H, major isomer, CH), 7.62-7.44 (m, 3H, ArH), 7.35-7.19 (m, 5H, ArH), 6.60 (brs, 1H), 4.26 (dd, J = 3.6, 9.6 Hz, 1H, minor isomer, CH), 4.17 (dd, J = 3.6, 9.6 Hz, 1H, major isomer, CH), 3.32 (dd, J = 3.6, 13.8 Hz, 1H, CH₂), 2.79 (dd, J =9.6, 13.8 Hz, 1H, minor isomer, CH_2), 2.78 (dd, J = 9.6, 13.8 Hz, 1H, major isomer, CH_2); ¹³C NMR (75 MHz, CDCl₃) δ 198.8 (C), 196.8 (C), 168.9 (C), 167.5 (C), 150.1 (CH), 149.2 (CH), 136.2 (C), 135.3 (CH), 134.0 (CH), 133.9 (CH), 133.5 (CH), 133.2 (C), 132.7 (C), 129.6 (CH), 129.09 (CH), 129.07 (CH), 128.99 (CH), 127.4 (CH), 123.9 (C), 123.4 (C), 62.5 (CH), 61.8 (CH), 38.8 (CH₂), 38.7 (*C*H₂). Anal. Calcd for C₁₈H₁₅NO₂: C, 77.96; H, 5.45; N, 5.05. Found: C, 77.90; H, 5.37; N, 5.07.

General procedure for the synthesis of benzylidene tetramic acids (4b-d)

All the experiments for the synthesis of benzylidene tetramic acids (4b-d) were carried out as described in the following typical procedure. For example, the reaction of phenylalanine-derived tetramic acid with *p*-tolualdehyde in the presence of hydrochloric acid for the synthesis of 4b was exemplified as follows.

Synthesis and characterization of 4b

To a solution of phenylalanine-derived tetramic acid (199 mg, 1.05 mmol, 1.0 equiv.) and *p*-tolualdehyde (631 mg, 5.25 mmol, 5.0 equiv.) in EtOH (1.1 mL, 0.95 M for tetramic acid) was added *conc.* hydrochloric acid (5 drops) at room temperature. After stirring the solution for 17 h, the solvent was removed under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane/AcOEt = 3/1 to 1/1) to give **4b** (268 mg, 88%, major isomer/minor isomer = 3/1 in CDCl₃) as a yellow solid: R_f = 0.40 (silica gel, hexane/AcOEt = 1/1); M.p. 158–160 °C; $[\alpha]_D^{25}$ –323 (*c* 0.625, CHCl₃); IR (KBr) 3182 (N–H), 3063 (N–H), 2917 (C–H), 1690 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.31 (d, *J* = 7.8 Hz, 2H, minor isomer, Ar*H*), 8.29 (d, *J* = 8.4 Hz, 2H, major isomer, Ar*H*), 7.76 (brs, 1H, NH), 7.71 (s, 1H, minor isomer, C*H*), 7.66 (s, 1H, major isomer, C*H*), 7.30-7.14 (m, 7H, Ar*H*), 4.22 (dd, *J* = 3.9, 8.4 Hz, 1H, minor isomer, C*H*), 4.13 (dd, *J* = 3.9, 8.4 Hz, 1H, major isomer, C*H*), 4.13 (dd, *J* = 3.9, 8.4 Hz, 1H, major isomer, C*H*), 3.25 (dd, *J* = 3.9, 14.1 Hz, 1H, C*H*₂), 2.84 (dd, *J* = 8.4, 14.1 Hz, 1H, C*H*₂), 2.42 (s, 3H,

major isomer, *CH*₃), 2.40 (s, 3H, minor isomer, *CH*₃); ¹³C NMR (75 MHz, CDCl₃) δ 199.0 (*C*), 197.0 (*C*), 169.4 (*C*), 167.9 (*C*), 149.7 (*C*H), 148.8 (*C*H), 145.3 (*C*), 144.7 (*C*), 136.2 (*C*), 135.4 (*C*H), 134.1 (*C*H), 130.8 (*C*), 130.1 (*C*), 129.8 (*C*H), 129.7 (*C*H), 129.6 (*C*H), 128.8 (*C*H), 127.1 (*C*H), 123.0 (*C*), 122.4 (*C*), 62.3 (*C*H), 61.7 (*C*H), 38.6 (*C*H₂), 38.5 (*C*H₂), 22.0 (*C*H₃), 21.9 (*C*H₃). Anal. Calcd for C₁₉H₁₇NO₂: C, 78.33; H, 5.88; N, 4.81. Found: C, 78.36; H, 5.77; N, 5.19.

Characterization for 4c

The crude product was purified by column chromatography (silica gel, hexane/AcOEt = 2/1) to give 4c (293 mg, 91%, major isomer/minor isomer = 2/1 in CDCl₃) as a yellow solid: $R_f = 0.29$ (silica gel, hexane/AcOEt = 1/1); M.p. 130–132 °C; $[\alpha]_D^{27}$ –295 (*c* 0.665, CHCl₃); IR (KBr) 3180 (N–H), 3068 (N–H), 1681 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.46 (d, *J* = 9.0 Hz, 2H, minor isomer, Ar*H*), 8.45 (d, *J* = 8.4 Hz, 2H, major isomer, Ar*H*), 7.69 (s, 1H, minor isomer, C*H*), 7.65 (s, 1H, major isomer, C*H*), 7.48 (brs, 1H, N*H*), 7.28-7.15 (m, 5H, Ar*H*), 6.98 (d, *J* = 9.0 Hz, 2H, major isomer, Ar*H*), 6.93 (d, *J* = 9.0 Hz, 2H, minor isomer, Ar*H*), 4.21 (dd, *J* = 3.9, 8.4 Hz, 1H, minor isomer, C*H*), 4.13 (dd, *J* = 3.9, 8.7 Hz, 1H, major isomer, C*H*), 3.87 (s, 3H, major isomer, C*H*₃), 3.86 (s, 3H, minor isomer, C*H*₃), 3.27 (m, 1H, C*H*₂), 2.82 (m, 1H, C*H*₂); ¹³C NMR (75 MHz, CDCl₃) δ 199.1 (*C*), 197.0 (*C*), 169.8 (*C*), 168.4 (*C*), 164.5 (*C*), 164.1 (*C*), 149.5 (*C*H), 148.6 (*C*H), 138.2 (*C*H), 136.9 (*C*H), 136.4 (*C*), 129.5 (*C*H), 128.9 (*C*H), 127.1 (*C*H), 126.7 (*C*), 125.9 (*C*), 121.2 (*C*), 120.5 (*C*), 114.5 (*C*H), 62.4 (*C*H), 61.6 (*C*H),

55.61 (*C*H₃), 55.56 (*C*H₃), 38.8 (*C*H₂), 38.6 (*C*H₂). Anal. Calcd for C₁₉H₁₇NO₃: C, 74.25; H, 5.58; N, 4.56. Found: C, 74.08; H, 5.52; N, 4.60.

Characterization for 4d

The crude product was purified by column chromatography (silica gel, hexane/AcOEt = 4/1 to 3/1) to give 4d (256 mg, 62%, major isomer/minor isomer = 1.1/1 in CDCl₃) as a yellow solid: $R_f = 0.46$ (silica gel, hexane/AcOEt = 1/1); M.p. 150–152 °C; $[\alpha]_D^{24}$ –53.7 (c 1.24, CHCl₃); IR (KBr) 3190 (N– H), 3070 (N–H), 2954 (C–H), 2869 (C–H), 1687 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.59 (brs, 1H, minor isomer, NH), 8.51-8.48 (m, 2H, minor isomer, ArH), 8.41-8.37 (m, 2H, major isomer, ArH), 8.37 (brs, 1H, major isomer, NH), 7.81 (s, 1H, major isomer, CH), 7.79 (s, 1H, minor isomer, CH), 7.59-7.43 (m, 3H, ArH), 4.09 (dd, J = 4.2, 9.6 Hz, 1H, minor isomer, CH), 4.00 (dd, J = 4.2, 9.6 Hz, 1H, major isomer, CH), 1.93 (m, 1H, CH), 1.76 (m, 1H, CH₂), 1.55 (m, 1H, CH₂), 1.04-0.98 (m, 6H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 200.4 (C), 198.5 (C), 169.6 (C), 168.5 (C), 149.5 (CH), 148.6 (CH), 135.2 (CH), 133.8 (CH), 133.7 (CH), 133.31 (C), 133.27 (CH), 132.8 (C), 129.0 (CH), 128.8 (CH), 124.1 (C), 123.6 (C), 60.1 (CH), 59.3 (CH), 41.7 (CH₂), 41.6 (CH₂), 25.0 (CH), 24.9 (CH), 23.5 (CH₃), 23.4 (CH₃), 21.6 (CH₃), 21.5 (CH₃). Anal. Calcd for C₁₅H₁₇NO₂: C, 74.05; H, 7.04; N, 5.76. Found: C, 73.87; H, 6.91; N, 5.87.

Synthesis and characterization of 5a^[8]

To a solution of phenylalanine-derived tetramic acid (550 mg, 2.91 mmol) in MeOH/EtOH (1/1, 15 mL) was added ammonium acetate (2.24 g, 29.1 mmol) at room temperature. After stirring the reaction mixture for 24 h, the solvent was removed under reduced pressure. The residue was dissolved in saturated NaHCO₃ aq. (10 mL), extracted with dichloromethane (70 mL×15), dried over Na₂SO₄, filtered, and concentrated in vacuo to give **5a** (295 mg, 54%) as a pale brown solid: R_f = 0.29 (silica gel, CHCl₃/MeOH = 10/1); M.p. 199–200 °C; [α]_D²⁷ –61.6 (*c* 0.515, MeOH); IR (KBr) 3362 (N–H), 3177 (N–H), 2960 (C–H), 1627 (C=O) cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 7.29-7.17 (m, 5H, Ar*H*), 4.55 (s, 1H, C*H*), 4.28 (dd, *J* = 4.2, 7.2 Hz, 1H, C*H*), 3.17 (dd, *J* = 4.2, 13.8 Hz, 1H, C*H*₂), 2.78 (dd, *J* = 7.2, 13.8 Hz, 1H, C*H*₂); ¹³C NMR (75 MHz, CD₃OD) δ 180.5 (C), 170.3 (C), 138.1 (C), 131.0 (CH), 129.5 (CH), 128.0 (CH), 89.1 (CH), 60.2 (CH), 40.1 (CH₂). Anal. Calcd for C₁₁H₁₂N₂O: C, 70.19; H, 6.43; N, 14.88. Found: C, 70.24; H, 6.53; N, 14.83.

Synthesis and characterization of 5b^[8]

To a solution of leucine-derived tetramic acid (285 mg, 1.84 mmol) in MeOH/EtOH (1/1, 9.2 mL) was added ammonium acetate (1.42 g, 18.4 mmol) at room temperature. After stirring the reaction mixture for 29 h, the solvent was removed under reduced pressure. The residue was dissolved in saturated NaHCO₃ aq. (10 mL), extracted with dichloromethane (30 mL×20), dried over Na₂SO₄, filtered, and

concentrated in vacuo to give **5b** (120 mg, 42%) as a pale yellow solid: $R_f = 0.29$ (silica gel, CHCl₃/MeOH = 10/1); M.p. 191–193 °C; $[\alpha]_D^{27}$ –35.3 (*c* 0.560, MeOH); IR (KBr) 3201 (N–H), 2957 (C–H), 1627 (C=O) cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 4.61 (s, 1H, CH), 4.07 (dd, J = 3.3, 9.9 Hz, 1H, CH), 1.80 (m, 1H, CH), 1.62 (ddd, J = 3.3, 9.9, 13.5 Hz, 1H, CH₂), 1.38 (ddd, J = 3.3, 9.9, 13.5 Hz, 1H, CH₂), 0.99 (d, J = 6.3 Hz, 3H, CH₃), 0.97 (d, J = 6.3 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CD₃OD) δ 180.8 (C), 172.1 (C), 88.1 (CH), 58.1 (CH), 44.1 (CH₂), 26.4 (CH), 24.5 (CH₃), 22.0 (CH₃). Anal. Calcd for C₈H₁₄N₂O: C, 62.31; H, 9.15; N, 18.17. Found: C, 62.41; H, 9.16; N, 18.06.

General procedure for the synthesis of lactam-fused pyridines.

All the experiments for the synthesis of lactam-fused pyridines were carried out as described in the following typical procedure. For example, the reaction of **4a** with **5a** for the synthesis of **2c** was exemplified as follows.

Synthesis and characterization of 2c

To a solution of **4a** (35.6 mg, 0.128 mmol, 1.5 equiv.) and **5a** (16.1 mg, 0.0855 mmol, 1.0 equiv.) in MeOH (0.85 mL, 0.1 M for **5a**) was added citric acid (8.2 mg, 0.043 mmol, 0.5 equiv.) at room temperature under a nitrogen atmosphere. After stirring the solution at reflux for 6 h, the solvent was removed under reduced pressure. The crude product was purified by column chromatography (silica gel,

 $CHCl_3/MeOH = 20/1$ to 10/1) to give a diastereometric mixture of dihydropyridines (41.4 mg) as a yellow oil. To a solution of dihydropyridines (41.4 mg) in CHCl₃ (1.0 mL) and MeOH (1 drop) was added MnO₂ (165 mg) at room temperature. After stirring the reaction mixture for 2 h, the reaction mixture was filtered through a pad of Celite and the residue was washed with CHCl₃/MeOH (10/1, 30 mL). The filtrate was concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, CHCl₃/MeOH = 60/1) to give **2c** (25.5 mg, 67%, >99% ee) as a pale yellow solid: $R_f = 0.40$ (silica gel, hexane/AcOEt = 1/3); M.p. 239–241 °C; $[\alpha]_D^{22}$ –173 (c 1.03, CHCl₃); IR (KBr) 3240 (N-H), 1712 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.49-7.45 (m, 5H, ArH), 7.37-7.26 (m, 10H, ArH), 6.34 (brs, 2H, NH), 4.88 (dd, J = 3.6, 9.9 Hz, 2H, CH), 3.75 (dd, J = 3.6, 13.7 Hz, 2H, CH₂), 2.76 (dd, J = 9.9, 13.7 Hz, 2H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 171.1 (C), 167.1 (C), 149.5 (C), 136.9 (C), 130.5 (CH), 129.8 (CH), 129.6 (C), 129.5 (CH), 129.2 (CH), 127.6 (CH), 127.4 (CH), 122.8 (C), 58.6 (CH), 40.1 (CH₂). Anal. Calcd for C₂₉H₂₃N₃O₂: C, 78.18; H, 5.20; N, 9.43. Found: C, 77.94; H, 5.57; N, 9.12. HRMS (ESI) calcd for C₂₉H₂₄N₃O₂ [M+H]⁺: 446.1869. Found: 446.1862. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak AD-H column (hexane/EtOH = 50/50), flow rate 0.5 mL/min, UV detection 254 nm, $t_{\rm R}$ = 20.4 min.

Characterization for 2d

A solution of 4b, 5a and citric acid in MeOH was stirred for 3 h at room temperature and then refluxed

for 12 h. The crude product was purified by column chromatography (silica gel, CHCl₃/MeOH = 60/1) to give **2d** (23.5 mg, 33%, >99% ee) as a pale yellow solid: R_f = 0.46 (silica gel, hexane/AcOEt = 1/3); M.p. 289–291 °C; [α]_D²⁶ –191 (*c* 0.250, CHCl₃); IR (KBr) 3201 (N–H), 2956 (C–H), 1714 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.38 (m, 2H, Ar*H*), 7.34-7.22 (m, 13H, Ar*H*), 6.76 (brs, 2H, N*H*), 4.86 (ddd, *J* = 0.9, 3.3, 9.3 Hz, 2H, C*H*), 3.69 (dd, *J* = 3.3, 13.8 Hz, 2H, C*H*₂), 2.80 (dd, *J* = 9.3, 13.8 Hz, 2H, C*H*₂), 2.40 (s, 3H, C*H*₃); ¹³C NMR (75 MHz, CDCl₃) δ 171.0 (C), 167.4 (C), 149.7 (C), 139.9 (C), 136.8 (C), 130.7 (CH), 129.5 (CH), 129.1 (CH), 128.2 (CH), 127.5 (CH), 126.4 (C), 122.7 (C), 58.5 (CH), 40.0 (CH₂), 21.7 (CH₃). Anal. Calcd for C₃₀H₂₅N₃O₂: C, 78.41; H, 5.48; N, 9.14. Found: C, 78.10; H, 5.71; N, 9.40. The enantiomeric excess was determined by HPLC with a Daicel Chiralcel OD-H column (hexane/EtOH = 80/20), flow rate 0.5 mL/min, UV detection 274 nm, *t*_R = 23.4 min.

Characterization for 2e

A solution of **4c**, **5a** and citric acid in MeOH was stirred for 3 h at room temperature and then refluxed for 17 h. The crude product was purified by column chromatography (silica gel, CHCl₃/MeOH = 30/1) to give **2e** (9.8 mg, 43%, >99% ee) as a pale yellow solid: $R_f = 0.31$ (silica gel, hexane/AcOEt = 1/3); M.p. 279–281 °C; $[\alpha]_D^{25}$ –162 (*c* 1.60, CHCl₃); IR (KBr) 3231 (N–H), 2928 (C–H), 1710 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.47 (m, 2H, Ar*H*), 7.34-7.24 (m, 10H, Ar*H*), 6.95 (m, 2H, Ar*H*), 6.75 (brs, 2H, N*H*), 4.85 (dd, *J* = 3.3, 9.3 Hz, 2H, C*H*), 3.84 (s, 3H, C*H*₃), 3.70 (dd, *J* = 3.3, 13.8 Hz, 2H, CH₂), 2.80 (dd, J = 9.3, 13.8 Hz, 2H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 171.2 (C), 167.5 (C), 161.1 (C), 149.5 (C), 136.9 (C), 132.8 (CH), 129.5 (CH), 129.1 (CH), 127.5 (CH), 122.5 (C), 121.3 (C), 112.9 (CH), 58.5 (CH), 55.3 (CH₃), 40.0 (CH₂). Anal. Calcd for C₃₀H₂₅N₃O₃: C, 75.77; H, 5.30; N, 8.84. Found: C, 75.77; H, 5.43; N, 8.89. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak AD-H column (hexane/EtOH = 40/60), flow rate 0.5 mL/min, UV detection 274 nm, $t_{\rm R} = 40.0$ min.

Characterization for 2f

The crude product was purified by column chromatography (silica gel, CHCl₃/MeOH = 70/1) to give **2f** (29.0 mg, 45%, >99% ee) as a pale yellow solid: $R_f = 0.46$ (silica gel, hexane/AcOEt = 1/3); M.p. 295–300 °C; $[\alpha]_D^{26}$ –44.2 (*c* 0.105, CHCl₃); IR (KBr) 3197 (N–H), 3091 (N–H), 2956 (C–H), 2927 (C–H), 1715 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃/CD₃OD (3/1, v/v)) δ 7.53-7.40 (m, 5H, Ar*H*), 4.68 (dd, J = 3.6, 9.6 Hz, 2H, C*H*), 2.05 (ddd, J = 3.6, 9.6, 13.2 Hz, 2H, C*H*₂), 1.96 (m, 2H, C*H*), 1.53 (ddd, J = 3.6, 9.6, 13.2 Hz, 2H, C*H*₂), 1.10 (d, J = 6.3 Hz, 6H, C*H*₃), 1.01 (d, J = 6.3 Hz, 6H, C*H*₃); ¹³C NMR (75 MHz, CDCl₃/CD₃OD (3/1, v/v)) δ 172.4 (*C*), 168.1 (*C*), 148.6 (*C*), 130.0 (*C*H), 129.8 (*C*), 128.9 (*C*H), 126.8 (*C*H), 121.9 (*C*), 55.6 (*C*H), 42.3 (*C*H₂), 25.2 (*C*H), 23.1 (*C*H₃), 21.1 (*C*H₃). Anal. Calcd for C₂₃H₂₇N₃O₂: C, 73.18; H, 7.21; N, 11.13. Found: C, 73.19; H, 7.23; N, 11.10. The enantiomeric excess was determined by HPLC with a Daicel Chiralcel OD-H column (hexane/EtOH = 90/10), flow rate 0.5

mL/min, UV detection 274 nm, $t_{\rm R} = 26.9$ min.

Characterization for 2g

The crude product was purified by column chromatography (silica gel, $CHCl_3/MeOH = 60/1$) to give **2g** (28.0 mg, 37%, >99% ee) as a pale yellow solid: $R_f = 0.46$ (silica gel, hexane/AcOEt = 1/3); M.p. 296–298 °C; [α]_D²⁵ –133 (c 0.825, CHCl₃); IR (KBr) 3216 (N–H), 2955 (C–H), 1713 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.73 (brs, 1H, NH), 7.52-7.40 (m, 5H, ArH), 7.25-7.15 (m, 6H, ArH, NH), 4.82 (dd, J = 3.6, 7.8 Hz, 1H, CH), 4.66 (dd, J = 3.6, 10.2 Hz, 1H, CH), 3.60 (dd, J = 3.6, 13.8 Hz, 1H, CH_2), 2.86 (dd, J = 7.8, 13.8 Hz, 1H, CH_2), 2.08 (ddd, J = 3.6, 10.2, 13.4 Hz, 1H, CH_2), 1.90 (m, 1H, *CH*), 1.48 (ddd, *J* = 3.6, 10.2, 13.4 Hz, 1H, *CH*₂), 1.04 (d, *J* = 6.6 Hz, 3H, *CH*₃), 1.00 (d, *J* = 6.6 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 172.9 (C), 171.0 (C), 168.5 (C), 167.7 (C), 148.9 (C), 136.6 (C), 130.5 (CH), 129.9 (C), 129.6 (CH), 129.5 (CH), 128.9 (CH), 127.3 (CH), 127.2 (CH), 122.6 (C), 122.4 (C), 58.5 (CH), 56.1 (CH), 42.8 (CH₂), 39.7 (CH₂), 25.7 (CH), 23.8 (CH₃), 21.4 (CH₃). Anal. Calcd for C₂₆H₂₅N₃O₂: C, 75.89; H, 6.12; N, 10.21. Found: C, 75.82; H, 6.20; N, 10.16. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak AD-H column (hexane/EtOH = 70/30), flow rate 0.5 mL/min, UV detection 274 nm, $t_{\rm R} = 18.2$ min.

Characterization for 7a

The crude product was purified by column chromatography (silica gel, CHCl₃/MeOH = 50/1 to 30/1) to give **7a** (55.4 mg, 93%, >99% ee) as a pale yellow solid: $R_f = 0.46$ (silica gel, hexane/AcOEt = 1/3); M.p. 163–165 °C; $[\alpha]_D^{26}$ –96.7 (*c* 1.43, CHCl₃); IR (KBr) 3216 (N–H), 1698 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.46-7.27 (m, 10H, Ar*H*), 6.14 (brs, 1H, N*H*), 4.76 (dd, *J* = 3.3, 10.5 Hz, 1H, C*H*), 3.69 (dd, *J* = 3.3, 13.5 Hz, 1H, C*H*₂), 2.66 (s, 3H, C*H*₃), 2.63 (dd, *J* = 10.5, 13.5 Hz, 1H, C*H*₂), 1.93 (s, 3H, C*H*₃); ¹³C NMR (75 MHz, CDCl₃) δ 205.7 (*C*), 167.5 (*C*), 167.0 (*C*), 158.3 (*C*), 145.6 (*C*), 137.6 (*C*), 137.3 (*C*), 132.8 (*C*), 129.9 (*C*H), 129.8 (*C*H), 129.4 (*C*H), 129.3 (*C*H), 128.5 (*C*H), 127.5 (*C*H), 119.8 (*C*), 58.8 (*C*H), 40.2 (*C*H₂), 32.0 (*C*H₃), 23.5 (*C*H₃). Anal. Calcd for C₂₃H₂₀N₂O₂: C, 77.51; H, 5.66; N, 7.86. Found: C, 77.13; H, 5.68; N, 7.50. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak IC column (hexane/EtOH = 80/20), flow rate 0.5 mL/min, UV detection 274 nm, $t_R = 26.7$ min.

Characterization for 7b

The crude product was purified by column chromatography (silica gel, CHCl₃/MeOH = 60/1) to give **7b** (39.6 mgl, 89%, >99% ee) as a pale yellow oil: $R_f = 0.54$ (silica gel, hexane/AcOEt = 1/3); $[\alpha]_D^{25} - 104$ (*c* 1.16, CHCl₃); IR (KBr) 3414 (N–H), 3245 (N–H), 1732 (C=O), 1703 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.44-7.25 (m, 10H, Ar*H*), 6.22 (brs, 1H, N*H*), 4.75 (dd, *J* = 3.3, 10.2 Hz, 1H, C*H*), 3.67 (dd, J = 3.3, 13.8 Hz, 1H, CH₂), 3.58 (s, 3H, CH₃), 2.73 (s, 3H, CH₃), 2.64 (dd, J = 10.2, 13.8 Hz, 1H, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 168.8 (C), 167.5 (C), 167.3 (C), 159.7 (C), 147.3 (C), 137.3 (C), 133.3 (C), 130.2 (C), 129.4 (CH), 129.3 (CH), 129.2 (CH), 129.0 (CH), 128.1 (CH), 127.5 (CH), 120.0 (C), 58.8 (CH), 52.6 (CH₃), 40.2 (CH₂), 23.5 (CH₃). Anal. Calcd for C₂₃H₂₀N₂O₃: C, 74.18; H, 5.41; N, 7.52. Found: C, 74.06; H, 5.37; N, 7.46. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak IC column (hexane/EtOH = 70/30), flow rate 0.5 mL/min, UV detection 274 nm, $t_{\rm R} = 19.9$ min.

Characterization for 7c

The crude product was purified by column chromatography (silica gel, hexane/AcOEt = 1/2 to 1/4) to give **7c** (66.0 mg, 78%, >99% ee) as a pale yellow solid: $R_f = 0.37$ (silica gel, hexane/AcOEt = 1/3); M.p. 135–137 °C; $[\alpha]_D^{28}$ –92.1 (*c* 1.72, CHCl₃); IR (KBr) 3407 (N–H), 3255 (N–H), 2921 (C–H), 1700 (C=O), 1658 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.47-7.07 (m, 15H, Ar*H*), 6.27 (brs, 1H, N*H*), 4.74 (dd, *J* = 3.3, 10.2 Hz, 1H, C*H*), 3.67 (dd, *J* = 3.3, 13.8 Hz, 1H, C*H*₂), 2.83 (s, 3H, C*H*₃), 2.61 (dd, *J* = 10.2, 13.8 Hz, 1H, C*H*₂); ¹³C NMR (75 MHz, CDCl₃) δ 167.7 (*C*), 167.4 (*C*), 166.0 (*C*), 160.6 (*C*), 146.3 (*C*), 137.13 (*C*), 137.06 (*C*), 132.8 (*C*), 132.6 (*C*), 129.5 (CH), 129.4 (CH), 129.3 (CH), 129.1 (CH), 128.3 (CH), 127.4 (CH), 125.4 (CH), 121.0 (CH), 119.8 (C), 58.8 (CH), 39.9 (CH₂), 23.5 (CH₃). Anal. Calcd for C₂₈H₂₃N₃O₂: C, 77.58; H, 5.35; N, 9.69. Found: C, 77.55; H, 5.47; N, 9.74. The

enantiomeric excess was determined by HPLC with a Daicel Chiralpak IE column (hexane/EtOH = 60/40), flow rate 0.5 mL/min, UV detection 274 nm, $t_{\rm R} = 16.7$ min.

Characterization for 7d

The crude product was purified by column chromatography (silica gel, $CHCl_3/MeOH = 60/1$ to 30/1) to give 7d (62.0 mg, 87%, >99% ee) as a pale yellow oil: $R_f = 0.60$ (silica gel, hexane/AcOEt = 1/3); $[\alpha]_D^{26}$ -63.3 (c 1.05, CHCl₃); IR (KBr) 3403 (N–H), 3259 (N–H), 1701 (C=O) cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.60 (ddd, J = 0.9, 1.8, 4.5 Hz, 1H, ArH), 8.38 (dt, J = 0.9, 8.1 Hz, 1H, ArH), 7.88 (dt, J = 1.8, 8.1 Hz, 1H, ArH), 7.44-7.23 (m, 11H, ArH), 6.61 (brs, 1H, NH), 4.85 (ddd, J = 0.9, 3.9, 9.6 Hz, 1H, CH), 4.04 (q, J = 7.2 Hz, 2H, CH₂), 3.66 (dd, J = 3.9, 13.8 Hz, 1H, CH₂), 2.77 (dd, J = 9.6, 13.8 Hz, 1H, CH₂), 0.98 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 168.0 (C), 167.2 (C), 166.8 (C), 156.7 (C), 155.4 (C), 148.7 (CH), 148.6 (C), 137.2 (CH), 137.1 (C), 133.0 (C), 130.0 (C), 129.5 (CH), 129.1 (CH), 127.9 (CH), 127.4 (CH), 124.6 (CH), 123.7 (CH), 122.0 (C), 61.4 (CH₂), 58.8 (CH), 40.0 (CH₂), 13.7 (CH₃). Anal. Calcd for C₂₈H₂₃N₃O₃: C, 74.82; H, 5.16; N, 9.35. Found: C, 74.77; H, 5.29; N, 9.28. The enantiomeric excess was determined by HPLC with a Daicel Chiralpak AD-H column (hexane/EtOH = 60/40), flow rate 0.5 mL/min, UV detection 274 nm, $t_{\rm R}$ = 19.5 min.

References

- [1] P. Jouin, B. Castro and D. Nisato, J. Chem. Soc., Perkin Trans. 1, 1987, 1177.
- [2] M. Hosseini, H. Kringelum, A. Murray and J. E. Tønder, Org. Lett., 2006, 8, 2103.
- [3] J. Dash and H.-U. Reissig, Chem. Eur. J., 2009, 15, 6811.
- [4] A. Davood, A. R. Nematollahi, M. Iman and A. Shafiee, Arch. Pharm. Res., 2009, 32, 481.
- [5] Z.-J. Zhang, Z.-H. Ren, Y.-Y. and Wang, Z.-H. Guan, Org. Lett., 2013, 15, 4822.
- [6] J. H. Lee, B. S. Choi, J. H. Chang, H. B. Lee, J.-Y. Yoon, J. Lee and H. Shin, *J. Org. Chem.*, 2007, 72, 10261.
- [7] K. Matsuo and K. Tanaka, Yakugaku Zasshi, 1984, 104, 1004.
- [8] N. R. Gade, V. Devendram, M. Pal and J. Iqbal, Chem. Commun., 2013, 49, 7926.

Column: Daicel CHIRALPAK[®] AD-H (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 50/50; Flow rate: 0.5 mL/min; UV detection: 254 nm.

Enantiomerically enriched (–)–2c (>99% ee)

TIME	AREA	MK	IDNO	CONC
5.947	1585			0.755
6.333	2960			1.4101
6.815	1119	٧		0.5331
20.448	204276			97.3018
			-	
TOTAL	209940			100

Column: Daicel CHIRALCEL[®] OD-H (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 80/20; Flow rate: 0.5 mL/min; UV detection: 274 nm.

Enantiomerically enriched (-)-2d (>99% ee)

Column: Daicel CHIRALPAK[®] AD-H (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 40/60; Flow

rate: 0.5 mL/min; UV detection: 274 nm.

27.577

D,L mixture of **2e**

		TIME	AREA	HEIGHT	MK	IDNO	CONC
		5.855	174	28			0.0249
		6.178	1166	70	V		0.1667
		6.655	2576	228	V		0.3684
	0	6.965	757	77	V		0.1083
	000	7.44	1051	61	V		0.1504
	40	7.927	1818	146	V		0.26
1		8.3	375	31	V		0.0536
<u>ه</u>		8.673	1199	73	V		0.1715
		9.171	42147	4100	V		6.0284
		15.188	679	40			0.0972
		21.102	887	38			0.1269
		27.577	328756	4850			47.0221
102		40.063	317565	2763			45.4215
· · · · · · · · · · · · · · · · ·		TOTAL	699151	12506			100

Enantiomerically enriched (–)–2e (>99% ee)

Column: Daicel CHIRALCEL[®] OD-H (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 90/10; Flow

Enantiomerically enriched (-)-2f (>99% ee)

Column: Daicel CHIRALPAK[®] AD-H (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 70/30; Flow

rate: 0.5 mL/min; UV detection: 274 nm.

D,L mixture of **2g**

	20		TIME	AREA	HEIGHT	MK	IDNO	CONC
	× I		5.666	181	30			0.0646
	-		5.9	134	12			0.0477
	05		6.118	220	21	V		0.0784
			6.877	882	110			0.3152
	61		18, 554	119482	3458			42.6906
			21.483	1387	25			0.4956
			22.417	1735	45	V		0.6198
			24,105	152634	2756	V		54.5354
de la	季	846	40.846	3226	32			1.1526
			- TOTAL	279880	6489			100

Enantiomerically enriched (–)–2g (>99% ee)

Column: Daicel CHIRALPAK[®] IC (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 80/20; Flow rate:

0.5 mL/min; UV detection: 274 nm.

Racemic standard of 7a

Enantiomerically enriched (–)–7a (>99% ee)

TIME	AREA	MK	IDNO	CONC
5.885	2827			0.7431
6.198	1798 375830			0.4725 98.7843
201010				
TOTAL	380455			100

Column: Daicel CHIRALPAC[®] IC (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 70/30; Flow rate:

Enantiomerically enriched (-)-7b (>99% ee)

Column: Daicel CHIRALPAK[®] IE (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 60/40; Flow rate:

0.5 mL/min; UV detection: 274 nm.

Racemic standard of 7c

Enantiomerically enriched (–)–7c (>99% ee)

Column: Daicel CHIRALPAK[®] AD-H (ϕ 0.46 cm, L 25 cm); Eluent: *n*-hexane/EtOH = 60/40; Flow rate: 0.5 mL/min; UV detection: 274 nm.

Enantiomerically enriched (–)–7d (>99% ee)

S47

