Supporting information

Donor-H···Acceptor	D-H	Н…А	D····A	D-H····A
	·	1		
O(1W)-H(1A)···O(3)	0.85	1.87	2.720(4)	173
O(1W)-H(1B)…F(3)	0.85	2.55	3.098(8)	123
O(2W)-H(2B)···O(1W)	0.85	1.94	2.769(6)	165
	I	2	I	L
C(2)- $H(2)$ ···F(2)	0.95	2.21	3.154(2)	175
$C(5)-H(5)\cdots F(5)$	0.95	2.35	3.278(8)	167
C(10)-H(10)…F(6)	0.95	2.44	3.341(0)	158
C(15)-H(15)…F(3)	0.95	2.35	3.278(3)	166
	•	3	1	1
O(1)-H(1A)…F(5)	0.85	2.05	2.889(4)	170
O(1)-H(1B)…F(5)	0.85	2.34	2.889(4)	123
C(7)- $H(7)$ ···F(1)	0.93	2.40	3.306(3)	163
$C(9)-H(9)\cdots F(5)$	0.93	2.42	3.332(3)	168

Table S1 Selected hydrogen bonds lengths [Å] and angles [°] for 1-3.

	Dihedral angles between triazole and aromatic pyridine rings f L_1 and L_2 (°)
1	4.12(1)
2	4.35(6)
3	26.39(9)

Table S2 Different dihedral angles (°) between triazole rings and aromatic pyridine rings of L1 and

L₂ for **1-3**.

Fig. S1 Powder X-ray diffraction (PXRD) patterns of 1 (black for calculated and red for experimental ones).

Fig. S2 Powder X-ray diffraction (PXRD) patterns of 2 (black for calculated and red for experimental ones).

Fig. S3 Powder X-ray diffraction (PXRD) patterns of 3 (black for calculated and red for experimental ones).

Fig. S4 UV-vis adsorption spectra of dichromate exchange samples of 2 were added into 50-fold molar amounts of NaClO₄.

Fig. S5 UV-vis adsorption spectra of (a) K₂Cr₂O₇ aqueous solution with addition of **3**; (b) KMnO₄ aqueous solution with addition of **3**; (c) congo red methanol solution with addition of **3**.

Fig. S6 PXRD patterns for (a) as-synthesized 3 (top) and anion-exchanged samples of 3 with K₂Cr₂O₇ (bottom); (b) as-synthesized 3 (top) and anion-exchanged samples of 3 with KMnO₄ (bottom); (c) as-synthesized 3 (top) and anion-exchanged samples of 3 with congo red (bottom).