Supplementary information

Manganese Dioxide Nanoparticles Incorporated within Ionic Liquid Derived Fibrillated Mesoporous Carbon: Electrode Material for High-Performance Supercapacitors

Sayed Habib Kazemi ^{*,a,b}, Babak Karimi ^{*,a}, Armin Fashi ^a, Hesam Behzadnia ^a, Hojjatollah Vali ^c

^a Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan 45137-66731 (Iran)

^b Center for Research in Climate Change and Global Warming (CRCC), Institute for Advanced

Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

^c Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research,

McGill University, 3450 University St. Montreal, Quebec, H3A 0C7 (Canada)

E-mail addresses: <u>habibkazemi@iasbs.ac.ir</u> and <u>karimi@iasbs.ac.ir</u>

Contents:

- Figure S-1: TEM image of pure IFMC
- Figure S-2: XPS plot recorded for IFMC
- Figure S-3: Capacitance retention plot

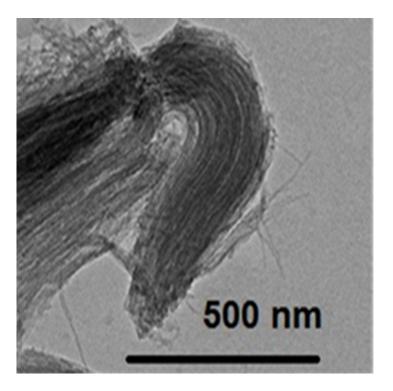
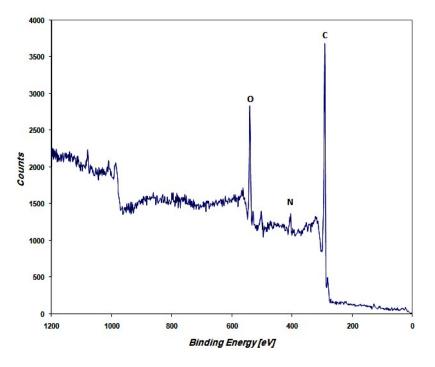



Figure S-1. TEM image of pure IFMC substrate

Figure S-2. X-ray photoelectron spectrum recorded for ionic liquid derived nano-fibrillated mesoporous carbon (IFMC) electrode material (The signals located at about 285, 403, and 535 eV were assigned to C, N, and O, respectively.)

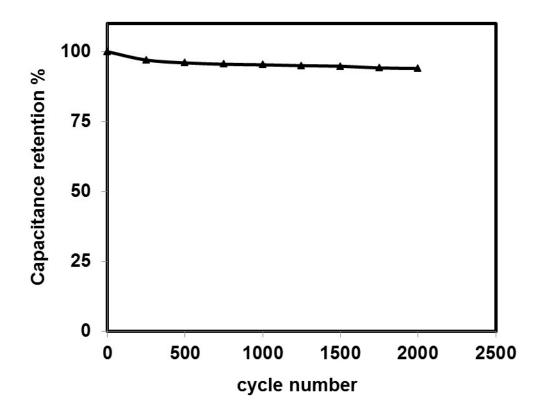


Figure S-3. Relative capacitance retention against charge/discharge cycle number for $MnO_2@IFMC$ supercapacitor