Supplementary Information

Nonenzymatic Electrochemical Glucose Sensor Based on mesoporous Au/Pt

nanodendrites

Yang Song^a, Chengzhou Zhu^a, He Li^{a,b*}, Dan Du^a and Yuehe Lin^{a*}

 ^a School of Mechanical and Material Engineering, Washington State university, Pullman, Washington 99163, United States
^b School of Biological Science and Technology, University of Jinan, Jinan 250022, China.

Corresponding authors: Dr. Yuehe Lin (yuehe.lin@wsu.edu); Dr. He Li (lihecd@gmail.com)

Figure S1. (a) Current real-time amperometric response of APME upon successively adding glucose into 0.1 M NaOH solution. The working potential is -0.35 V. The first five adding were 100 nM glucose whereas 500 nM after. (b) Calibration curve of our APME towards glucose concentration response in the range of 100 nM to 10 μ M at -0.35 V. The limit of detection is 40 nM (S/N = 3).