Supporting information

A novel tetraethylenepentamine functionalized polymeric adsorbent for enhanced removal and selective recovery of heavy metal ions from saline solutions

Xiao-Peng Zhang,^{ab} Fu-Qiang Liu, *^a Chang-Qing Zhu,^a Chao Xu,^a Da Chen,^a Meng-Meng Wei,^a Jian Liu,^b Cheng-Hui Li,^b Chen Ling,^a Ai-Min Li^a and Xiao-Zeng You^b

^aState Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China, E-mail: jogia@163.com; Fax: +86-25-89680377; Tel: +86-25-89680377

^bState Key laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing university, Nanjing 210093, People's Republic of China

Fig. S1 TGA curve of PAMD.

Fig. S2 Adsorption performances of Cu(II) onto PAMD in different nitrate systems.

Fig. S3 Adsorption amounts of Cu(II) onto PAMD with different concentrations of a series of chlorides.

Fig. S4 Adsorption amounts of Cu(II) onto PAMD with different concentrations of a series of sodium salts.

Fig. S5 Adsorption amounts of Cu(II) onto PAMD with different concentrations of a series of calcium salts.

Fig. S6 Effect of pH on the sorption of Cu(II) and Ni(II) onto PAMD (solid line) and S984 (dash line) in sole system.

Fig. S7 Adsorption amounts of Cu(II) (left) and Ni(II) (right) as a function of aqueous pH-value in Cu(II)/ NaNO₃ or Ni(II)/NaNO₃ binary systems.

Fig. S8 Three-dimensional isotherm surfaces of PAMD simulated with the modified Langmuir model from: (a) Cu(II)/Ni(II) binary systems, (b) Cu(II)/Ni(II)/NaNO₃ (10 mmol/L) ternary systems, (c) Cu(II)/Ni(II)/NaNO₃ (100 mmol/L) ternary systems, (d) Cu(II)/Ni(II)/NaNO₃ (1500 mmol/L) ternary systems.

Table	S1	Parameters	of	Cu(II)/Ni(II)	binary	and	Cu(II)/Ni(II)/NaNO ₃	ternary
isother	m m	odels for the	adso	orption of Cu(I	I) and N	li(II) o	onto PAMD.	

Cu(II)/Ni(II)/NaNO ₃	Modified Langmuir	Extended Langmuir
0 mmol/L	RSS=1.3602	RSS=0.1283
parameters	$\eta_{Cu} = 2.1843$	Qmax=2.7839
	η_{Ni} =15.4302	K_{Cu} =0.4680; K_{Ni} =0.0201
10 mmol/L	RSS=1.4261	RSS=0.0829
parameters	$\eta_{Cu} = 1.7244$	Qmax=2.8441
	η_{Ni} =21.4421	K _{Cu} =0.6727; K _{Ni} =0.0178
100 mmol/L	RSS=2.1138	RSS=0.1527
parameters	$\eta_{Cu} = 1.2013$	Qmax=2.8876
	$\eta_{_{Ni}}$ =25.0151	K _{Cu} =0.8258; K _{Ni} =0.0116
1500 mmol/L	RSS=2.4425	RSS=0.1511
parameters	$\eta_{Cu} = 1.0348$	Qmax=2.9011
	η_{Ni} =131.5789	K _{Cu} =0.9748; K _{Ni} =0.0024

$C_{\rm NaNO3}$	Ni(II) Cu(II)	0.5 mmol/L	1.0 mmol/L	2.0 mmol/L	5.0 mmol/L
0	0.5 mmol/L	4.46	7.10	10.25	23.67
mmol/L	1.0 mmol/L	8.42	14.64	20.63	27.82
	2.0 mmol/L	10.94	16.00	23.15	29.79
	5.0 mmol/L	29.35	74.08	560.53	1160.19
	Ni(II) Cu(II)	0.5 mmol/L	1.0 mmol/L	2.0 mmol/L	5.0 mmol/L
10	0.5 mmol/L	6.38	11.59	19.76	104.88
mmol/L	1.0 mmol/L	27.49	45.79	72.71	122.40
	2.0 mmol/L	37.26	70.33	105.55	201.15
	5.0 mmol/L	149.34	236.03	787.93	1984.33
	Ni(II) Cu(II)	0.5 mmol/L	1.0 mmol/L	2.0 mmol/L	5.0 mmol/L
100	Ni(II) Cu(II) 0.5 mmol/L	0.5 mmol/L 12.23	1.0 mmol/L 19.28	2.0 mmol/L 47.09	5.0 mmol/L 129.71
100 mmol/L	Ni(II) Cu(II) 0.5 mmol/L 1.0 mmol/L	0.5 mmol/L 12.23 29.48	1.0 mmol/L 19.28 238.27	2.0 mmol/L 47.09 296.28	5.0 mmol/L 129.71 455.36
100 mmol/L	Ni(II) Cu(II) 0.5 mmol/L 1.0 mmol/L 2.0 mmol/L	0.5 mmol/L 12.23 29.48 75.21	1.0 mmol/L 19.28 238.27 285.51	2.0 mmol/L 47.09 296.28 448.67	5.0 mmol/L 129.71 455.36 576.80
100 mmol/L	Ni(II) Cu(II) 0.5 mmol/L 1.0 mmol/L 2.0 mmol/L 5.0 mmol/L	0.5 mmol/L 12.23 29.48 75.21 159.79	1.0 mmol/L 19.28 238.27 285.51 640.84	2.0 mmol/L 47.09 296.28 448.67 1283.12	5.0 mmol/L 129.71 455.36 576.80 4803.94
100 mmol/L	Ni(II) Cu(II) 0.5 mmol/L 1.0 mmol/L 2.0 mmol/L 5.0 mmol/L Ni(II) Cu(II)	0.5 mmol/L 12.23 29.48 75.21 159.79 0.5 mmol/L	1.0 mmol/L 19.28 238.27 285.51 640.84 1.0 mmol/L	2.0 mmol/L 47.09 296.28 448.67 1283.12 2.0 mmol/L	5.0 mmol/L 129.71 455.36 576.80 4803.94 5.0 mmol/L
100 mmol/L 	Ni(II) Cu(II) 0.5 mmol/L 1.0 mmol/L 2.0 mmol/L 5.0 mmol/L Ni(II) Cu(II) 0.5 mmol/L	0.5 mmol/L 12.23 29.48 75.21 159.79 0.5 mmol/L 33.47	1.0 mmol/L 19.28 238.27 285.51 640.84 1.0 mmol/L 55.57	2.0 mmol/L 47.09 296.28 448.67 1283.12 2.0 mmol/L 104.84	5.0 mmol/L 129.71 455.36 576.80 4803.94 5.0 mmol/L 202.48
100 mmol/L 1500 mmol/L	Ni(II) Cu(II) 0.5 mmol/L 1.0 mmol/L 2.0 mmol/L 5.0 mmol/L Ni(II) Cu(II) 0.5 mmol/L 1.0 mmol/L	0.5 mmol/L 12.23 29.48 75.21 159.79 0.5 mmol/L 33.47 388.17	1.0 mmol/L 19.28 238.27 285.51 640.84 1.0 mmol/L 55.57 672.83	2.0 mmol/L 47.09 296.28 448.67 1283.12 2.0 mmol/L 104.84 731.62	5.0 mmol/L 129.71 455.36 576.80 4803.94 5.0 mmol/L 202.48 1180.71
100 mmol/L 1500 mmol/L	Ni(II) Cu(II) 0.5 mmol/L 1.0 mmol/L 2.0 mmol/L 5.0 mmol/L Ni(II) Cu(II) 0.5 mmol/L 1.0 mmol/L 2.0 mmol/L	0.5 mmol/L 12.23 29.48 75.21 159.79 0.5 mmol/L 33.47 388.17 502.36	1.0 mmol/L 19.28 238.27 285.51 640.84 1.0 mmol/L 55.57 672.83 845.25	2.0 mmol/L 47.09 296.28 448.67 1283.12 2.0 mmol/L 104.84 731.62 1232.02	5.0 mmol/L 129.71 455.36 576.80 4803.94 5.0 mmol/L 202.48 1180.71 2454.26

Table S2 Separation factors α_{Ni}^{Cu} in binary and ternary systems for PAMD.

Fig. S9 Kinetic adsorption behaviors of Cu(II) and Ni(II) in Cu(II)/Ni(II) binary and Cu(II)/Ni(II)/NaNO₃ ternary systems.

Concentratio		First-order		S	Second-order			
n of NaNO ₃ (mm ol/L)	Metal s	qe	k ₁	r ²	qe	k ₂	r ²	h
	Cu(II)	0.6565 1	0.0015 6	0.9965 8	0.9129 4	0.00136	0.9931	0.00113
0	Ni(II)	0.2329 1	0.0095 5	0.9803 5	0.2571 9	0.05395	0.9636 3	0.00356 9
	Cu(II)	0.7240 8	0.003	0.9651 8	0.8885 6	0.00351	0.9369 7	0.00277 1
100	Ni(II)	0.1715 9	0.0323 1	0.9036 8	0.3291 5	0.17894	0.9586	*
	Cu(II)	0.9280 4	0.0032 2	0.9819 4	1.1278 6	0.00305	0.9571	0.00388
500	Ni(II)	0.0981 5	0.0146 4	0.9909	0.1063	0.20381	0.9417 4	*
1500	Cu(II)	1.1243 8	0.0030 8	0.9849 4	1.3548 3	0.00253	0.9883 1	0.00464 4
1500	Ni(II)	0.0081 4	0.1043 4	0.9888 6	0.0082	33.0450 5	0.8209 9	*

Table S3 Kinetic rate parameters for the adsorption of Cu(II) and Ni(II) in Cu(II)/Ni(II) binary and Cu(II)/Ni(II)/NaNO₃ ternary systems.

Fig. S10 Time course of adsorbed H⁺, Cu²⁺ and H⁺/Cu²⁺ in Cu(II)/Ni(II) (solid line) binary system and Cu(II)/Ni(II)/NaNO₃ (500 mmol/L) (dash line) ternary system.

Fig. S11 Time course of pH in Cu(II)/Ni(II) binary system and Cu(II)/Ni(II)/NaNO₃ (500 mmol/L) ternary system.

Fig. S12 Breakthrough curves for Cu(II) and Ni(II) from different dynamic adsorption systems.

Table S4 Breakthrough curves parameters for adsorptions of Cu(II) and Ni(II) ontoPAMD in different dynamic systems.

	Heavy metal	Breakthrough pints	Saturation points	
r AlviD	ions	(BV)	(BV)	
Single gystem	Cu(II)	92	332	
Single system	Ni(II)	4	244	
Dinomy system	Cu(II)	120	312	
Binary system	Ni(II)	1	160	
Ternary system (100	Cu(II)	152	252	
mmol/L NaNO ₃)	Ni(II)	0.5	64	
Ternary system (1500	Cu(II)	172	228	
mmol/L NaNO ₃)	Ni(II)	0.5	56	
	_			

Fig. S13 Desorptions of PAMD for Cu(II) and Ni(II) in single system.

Fig. S14 Regeneration and reuse of PAMD with 15% HCl.

Fig. S15 FTIR spectra of PAMD before and after adsorption.

Fig. S16 XPS spectra of PAMD before and after adsorbing Cu(II) and Ni(II).

Fig. S17 The Mulliken atomic charge distribution of PAMD.

Fig. S18 Coordination modes for Cu(II) ions on PAMD (upper: Complex-I; bottom: Complex-II).

 Table S5 Selected optimized geometrical parameters of complexes.

	PAMD	Complex-I	Complex-II
$\Delta E(kJ/mol)$		-2344.65	-1987.36

			C8-N9 1 457
		C8-N9 1.457	
	C14-N15 1.469		N9-C10 1.631
	N15-C16 1 470	N9-C10 1.456	C11-N12 1 455
		C11-N12 1.456	
Pond longth(Å)	C17-N18 1.469	N12 C12 1 455	N12-C13 1.455
Donu length(A)	N18-C19 1.469	N12-C15 1.455	C14-N15 1.500
		C14-N15 1.454	
	C20-N21 1.467	N12-Cu49 1 95	N19-Cu49 1.96
			N12-Cu49 1.96
		N15-Cu49 1.95	$N15 C_{11}40 = 2.06$
			N13-Cu49 2.00
			C8-N9-C10 99.02
			N9-C10-C11 92.37
		C8-N9-C10 115.07	
		N9-C10-C11 1101	C11-N12-C13 114.2
	C14-N15-C16 115.9		N12-C13-C14 110.0
	N15 C16 C17 110 7	C11-N12-C13 114.2	C12 C14 N15 110 7
	N15-C10-C1/ 110./	N12-C13-C14 110.0	C13-C14-IN15 110.7
Bond angle(°)	C17-N18-C19 116.8		C8-N9-Cu4 127.73
	N18-C19-C20 110.9	C13-C14-N15 110.3	C10-N9-Cu49 116.27
	1110 017 020 110.5	C13-N12-Cu49 97.8	C101() Cuty 110.27
	C19-C20-N21 110.7	C14 N15 C::40 102 7	N9-Cu49-N12 81.98
		C14-N15-Cu49 102./	C13-N12-Cu49 107.1
		N12-Cu49-N15 94.0	
			C14-N15-Cu49 107.0
			N12-Cu49-N15 87.1

Metal ions	$ log K_{MOH} $	δ	IP	Z^2/r
Cu(II)	6.00	0.104	7.73	283.03
Ni(II)	4.14	0.126	18.17	237.13
(mmol/e)	In Cu²⁺/NaN 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 PAMD _x I	O3 solution In N	AMD _{NF} IV V VI	

Fig. S19 ^B-potential of PAMD at different solution pH values and salt concentrations.

Table S6 Characteristic parameters of Cu(II) and Ni(II).

Fig. S20 Preloading experiments at pH = 3: the PAMD beads adsorbed with nickel at 0.56 mmol/g (PAMD_{Ni}). Then these beads were placed in the different systems. I: in Cu(NO)₃ solution; II: in Cu²⁺+NaNO₃ (100 mmol/L) solution; III: in Cu²⁺+NaNO₃ (200 mmol/L) solution; V: in NaNO₃ (100 mmol/L) solution; V: in NaNO₃ (100 mmol/L) solution; VI: in NaNO₃ (200 mmol/L) solution.

Fig. S21 Promotion ratios (Pr) of Cu(II) and Ni(II) in Cu(II)/Na(I) and Ni(II)/Na(I) binary systems with different concentrations of NaNO₃.

Fig. S22 Schematic picture of EDL in the adsorption system regarding polyamine resins.