Electrochemical fabrication of gold nanoparticles decorated on activated fullerene C60; An enhanced sensing platform for trace level detection of toxic hydrazine in water samples Selvakumar Palanisamy, Balamurugan Thirumalraj, Shen-Ming Chen^{*}

Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.

*E-mail: smchen78@ms15.hinet.net; Fax: +886-2-27025238; Tel: +886-2-27017147.

Supporting information

Fig. S1 Electrochemical deposition of AuNPs on AC60 (red line) and C60 (blue line) modified SPCEs by 5 consecutive cyclic voltammograms in the electrochemical cell containing 1.3 mM $K(AuCl_4)$. $3H_2O + 0.5 M H_2SO_4$ at the scan rate of 50 mV s⁻¹.

Fig. S2 Quantitative results of EDX profile for AC60-AuNPs modified SPCE.

Fig. S3 Optimization of AuNPs electrodeposition on AC60 modified SPCE; Different AuNPs deposition cycle vs. peak potential (A) and peak current response (B) for 1 mM hydrazine in N_2 saturated PBS at a scan rate of 50 mV s⁻¹.

Fig. S4 Correlation between the results obtained for the detection of hydrazine by AC60-AuNPs modified electrode and HPLC method. x axis: hydrazine electrochemical sensor (AC60-AuNPs modified electrode); y axis: HPLC method.

Modified electrode		Sensitivity	LOD	LCR	Ref.
	Method	(µAµM ⁻¹ cm ⁻²)	(µM)	(µM)	
AuCu ₃ /AuBPE	FIA	0.164	0.04	up to 1000	1
(Au-SH-SiO ₂ @Cu-MOF)/GCE	DPV	0.1	0.01	up to 1000	2
AuNPs/GPE	Amp.	_	3.07	up to 1000	3
GR/Pectin AuNPs/GCE	Amp.	1.786	0.0016	up to 197.4	4
AG/AuNPs/SPCE	Amp.	0.54	0.00057	up to 936	5
AuNPs/choline/GCE	LSV	0.0843	0.1	up to 500	6
ZnO/Nf/AuE	Amp.	0.015	0.25	up to 200	7
γ-Fe ₂ O ₃ /Au/GCE	Amp.	0.060	0.006	up to 11	8
Au/ZnO-MWCNT/GCE	Amp.	0.0428	0.15	up to 1800	9
AuNPs/TWEEN/GO/GCE	Amp.	NA	0.078	up to 0.003	10
AC60-AuNPs/SPCE	Amp.	0.583	0.039	up to 1210	This
					work

Table ST1 Comparison of analytical performance (sensitivity, LOD and LCR) of AC60-AuNPs

modified SPCE with previously reported AuNPs based hydrazine sensors.

Abbreviations;

LOD – limit of detection, LCR – linear concentration range, AuBPE – barrel-plated gold electrode, FIA – flow injection analysis, (Au-SH-SiO₂@Cu-MOF) – Metal-organic frameworks, GCE – glassy carbon electrode, DPV – differential pulse voltammetry, AuNPs – gold nanoparticles, GPE – graphite paste electrode, GR – graphene, AG – activated graphite, SPCE – screen printed carbon electrode, LSV – linear sweep voltammetry, ZnO – zinc oxide, Nf – nafion, AuE – gold electrode, γ -Fe₂O₃ – iron oxide nanoparticles, Au – nano gold, MWCNT – multiwalled carbon nanotubes, GO – graphene oxide.

References

- Y.C. Choua, C.Y. Taia, J.F. Leeb, T.S. Chanb and J.M. Zena, *Electrochim. Acta*, 2013, 104, 104–109.
- H. Hosseini, H. Ahmar, A. Dehghani, A. Bagheri, A.R. Fakhari and M.M. Amini, *Electrochim. Acta*, 2013, 88, 301–309.
- 3. M.A. Aziz and A.N. Kawde, *Talanta*, 2013, **115**, 214–221.
- R. Devasenathipathy, V. Mani, S.M. Chen, D. Arulraj and V.S. Vasantha, *Electrochim. Acta*, 2014, 135, 260–269.
- C. Karuppiah, S. Palanisamy, S.M. Chen, S.K. Ramaraj and P. Periakaruppan, *Electrochim. Acta*, 2014, 139, 157–164.
- 6. J. Li, H. Xie and L. Chen, Sens. Actuators B, 2011, 153, 239–245.
- 7. Y. Ni, J. Zhu, L. Zhang and J. Hong, *CrystEngComm.*, 2010, **12**, 2213–2218.
- 8. Y. You, Y. Yang and Z. Yang, J. Solid State Electrochem., 2013, 17, 701–706.
- C. Zhang, G. Wang, Y. Ji, M. Liu, Y. Feng, Z. Zhang and B. Fang, Sens. Actuators B, 2011, 153, 239–245.
- W. Lu, R. Ning, X. Qin, Y. Zhang, G. Chang, S. Liu, Y. Luo and X. Sun, *J. Hazard. Mater.*, 2011, **197**, 320–326.