Electronic Supplementary Information (ESI)

Speciation and determination of inorganic arsenic species in water and biological samples by ultrasound assisted-dispersive-micro-solid phase extraction on carboxylated nanoporous graphene coupled with flow injection-hydride generation atomic absorption spectrometry

Aisan Khaligh^a, Hamid Shirkhanloo^{b,c}, Hassan Zavvar Mousavi^{a,1}, Alimorad Rashidi^c

^a Department of Chemistry, Semnan University, Semnan 35131-1911, Iran.

^b Occupational and Environmental Health Research Center (OEHRC), Iranian Petroleum Industry Health Research Institute (IPIHRI), Tehran 1485733111, Iran.

^c Nanotechnology Research Center, Research Institute of Petroleum Industry, Tehran 1485733111, Iran.

¹Corresponding author at: Department of Chemistry, Semnan University, Semnan 35131-1911, Iran. E-mail address: <u>hzmousavi@semnan.ac.ir</u>, Tel.: +98 23 3366194; Fax: +98 23 3354110

Fig. S1 Final pH versus initial pH plots for 0.15 g of pristine and carboxylated nanoporous graphene.

Fig. S2 Effect of amount of adsorbent on the recovery of 0.5 μg L⁻¹ of As (V) ions. Conditions. solution pH 3.5; (a) H-US-D-μ-SPE: sample volume 50 mL; eluent 1000 μL of 0.5 mol L⁻¹ NaOH; extraction time 3 min. (b) L-US-D-μ-SPE: sample volume 5 mL; eluent 1000 μL of 0.3 mol L⁻¹ NaOH; extraction time 1 min.

Fig. S3 Effect of eluent volume on the recovery of 0.5 μg L⁻¹ of As (V) ions. Conditions. solution pH 3.5; (a) H-US-D-μ-SPE: sample volume 50 mL, sorbent 10 mg; eluent 0.5 mol L⁻¹ NaOH; extraction time 3 min. (b) L-US-D-μ-SPE: sample volume 5 mL; sorbent 3 mg; eluent 0.3 mol L⁻¹ NaOH; extraction time 1 min.

Fig. S4 Effect of sample volume on the recovery of 0.025 μg of As (V) ions. Conditions: solution pH 3.5; sorbent 10 mg; eluent 1000 μL of 0.5 mol L⁻¹ NaOH; extraction time 3 min.

Fig. S5 Effect of agitation type on the recovery of 0.5 μ g L⁻¹ of As (V) ions. Conditions: sample volume 50 mL; solution pH 3.5; sorbent 10 mg; eluent 1000 μ L of 0.5 mol L⁻¹ NaOH; extraction time 3 min.

Features	Value
Linear range, µg L ⁻¹	0.5–30
Correlation coefficient	0.9988
Wavelength, nm	197.2
Lamp current, mA	8.0
Slit, nm	1.0
Mode	Peak Area
HCl carrier solution, $\% (v/v)$	5.0
$NaBH_4$ reducing agent, % (m/v)	0.6 (in 0.5% w/v NaOH)
Argon flow rate, mL min ⁻¹	10
Air flow rate, mL min ⁻¹	4.7
Acetylene flow rate, mL min ⁻¹	1.2

 Table S1 The FI-HG-AAS conditions for arsenic determination.

		Adsorpti							
Metal ions	Adsorbent	(n	(mg g ⁻¹)						
		As (III)	As (V)						
As (V)	GO ^a /ferric hydroxide		23.78	63					
As (V)	GO		59.60	64					
As (V)	Magnetic GO		80.10	64					
As (III), As (V)	GO–ZrO(OH) ₂	95.15	84.89	65					
As (III), As (V)	NZVI ^b –RGO ^c composite	35.83	29.04	66					
As (III), As (V)	Fe ₃ O ₄ -RGO ^c -MnO ₂ nanoparticles	14.04	12.22	67					
As (III), As (V)	Cu doped Fe ₃ O ₄	37.97	42.90	68					
As (V)	Fe ₃ O ₄ -loaded activated carbon		43.70	69					
As (V)	Iron-treated clinoptilolite		30.21	70					
As (V)	Mn ₃ O ₄ crystalline powder		0.35	71					
As (V)	surfactant-modified zeolite		74.30	72					
As (V)	Fe ²⁺ oxide coated ethylenediamine-MWCNT ^d		17.80	73					
As (V)	Granular TiO ₂		41.40	74					
As (V)	Carboxylated nanoporous graphene		125.40	This work					
As (V)	Nanoporous graphene		35.00	This work					
^a Graphene oxide, ^b Nanoscale zero valent iron, ^c Reduced graphite oxide.									

Table S2 Comparison of the adsorption capacities of various adsorbents for removal of As

(V) ions from water samples by batch method.

Species	Method/ Detection	Sorbent	Matrix	PF ^a	LOD ^b	R.S.D ^c	Linear range	Loading	Sample	Ref.
					(µg L ⁻¹)	(%)	(µg L ⁻¹)	time (min)	volume (mL)	
As(V), As(III)	SPE ^d / HG-AAS ^e	Nano ZrO ₂ /B ₂ O ₃	Water	20	0.185		0.03–40	33	100	9
converted to As(V) As(V), As(III)	SPE/ Molybdenum blue	CTAB@ACMNPs ^f	Water	175	0.028 mg L ⁻¹	2.8	0.09–4.0		350	19
converted to $As(V)$ As(V), As(III)	Online-microcolumn	CTAB-alkyl silica	Water	27.6*	0.15	4	0.5-1000	106 s	3	75
As(V)	SPE/ HG-AFS ^h	Eggshell membrane	Water	33.3	0.001	2.1		67	200	4
As(V), As(III)	SPE/ FI-ICP-OES	Anion exchange resin	Water		As(V): 0.1 As(III): 0.1	5	0.5-2.0	15	20	76
As(III) As(V)	SPE/ ICP-MS ⁱ	APDC ⁱ -Carbon nanofibers	Water	33*	As(III):0.0045 As(V):0.24	1.9 2.6		100	100	77
As(III), As(V) converted to As(III)	SPE/ HG-AAS	Alternaria solani coated HP-2MG resin	Water, Food, Human hair	35	0.011	< 7		50	250	3
As(III), As(V) converted to As(III)	SPE/ HG-AAS	Streptococcus pyogenes immobilized on Sepabeads SP 70	Water and food	36	0.013	< 8	1-25	62.5	250	11

Table S2. Comparison of the developed US-D-µ-SPE methods with other reported procedures for determination of As ions in different matrixes.

As (III, V), Sb (II, IV),	SPE/ ET-AAS ^k	APDC-CNT ¹	Water	As (III):250	0.02	3.5	0.03-0.6	33	50	14
As (V) converted to										
As (III)										
As (III, V), Sb (II, IV),	SPE/ ICP-MS	APDC-C18	water	50	As (V): 0.09					78
Se (IV)					As (III): 0.0012					
As(III)	SPE/ GF-AAS ^m	Immobilized	Water	50	0.024	4.8	Up to 200	50	50	79
		nanometer TiO ₂								
As(III), As(V)	On-line SPE/	SiO ₂ /ZrO ₂	Water	20*	0.05	< 8		31	100	80
converted to As(III)	FI-HG-AAS									
As (III, V), Sb (III,V)	Online-micro column	Modified mesoporous	Water	10	As (III):0.49	1.5				81
	SPE/ ICP-OES	TiO ₂			As (V): 0.53	3.9				
As(III), As(V)	SPE/ ICP-MS	Thiol- and amine-	Water		As (III):0.025	4.5			10	18
		bifunctionalized			As (V): 0.015	5.6				
		mesoporous silica								
As(V), As(III)	D-µ-SPE/FI-HG-AAS	Carboxalated	Water and	50.3	0.0021	3.1	0.01 - 0.65	3	50	This
converted to As(V)		nanoporous graphen	Human serum and urine	5.1	0.0248	2.6	0.11 - 6.60	1	5	work

^a Preconcentration factor, ^b Detection limit, ^c Relative standard deviation, ^d Solid phase extraction, ^e Hydride generation atomic absorption spectrometery, ^f Cetyltrimethyl ammonium bromide immobilized on alumina-coated magnetite nanoparticles, ^g Inductively coupled plasma optical emission spectrometry, ^h Hydride generation atomic fluorescence spectrometry, ⁱ Inductively coupled plasma mass spectrometry, ^jAmmonium pyrrolidine dithiocarbamate, ^k Electrothermal atomic absorption spectrometry, ¹ Carbon nanotubes, ^m Graphite furnace atomic absorption spectrometry, * Enrichment factor

References

- 63. K. Zhang, V. Dwivedi, C. Chi and J. Wu, J. Hazard. Mater., 2010, 182, 162.
- G. Sheng, Y. Li, X. Yang, X. Ren, S. Yang, J. Hu and X. Wang, *RSC Adv.*, 2012, 2, 12400.
- K. Luo, C. Wang, L. Wang, F. Deng, S. Luo, X. Tu and C. Au, *Chem. Eng. J.*, 2013, 220, 98.
- C. Wang, H. Luo, Z. Zhang, Y. Wu, J. Zhang and S. Chen, *J. Hazard. Mater.*, 2014, 268, 124.
- K. Luo, C. Wang, S. Luo, R. Dong, X. Tu and G. Zeng, *Chem. Eng. J.*, 2012, 187, 45.
- T. Wang, W. Yang, T. Song, C. Li, L. Zhang, H. Wang and L. Chai, *RSC Adv.*, 2015, 5, 50011.
- 69. Z. Liu, F.-S. Zhang and R. Sasai, *Chem. Eng. J.*, 2010, 160, 57.
- 70. K. B. Payne and T. M. Abdel-Fattah, J. Environ. Sci. Health, 2005, 40, 723.
- K. Babaeivelni, A. P. Khodadoust and D. Bogdan, J. Environ. Sci. Health, Part A, 2014, 49, 1462.
- J. Mendoza-Barrón, A. Jacobo-Azuara, R. Leyva-Ramos, M. S. Berber-Mendoza,
 R. M. Guerrero-Coronado, L. Fuentes-Rubio and J. M. Martínez-Rosales,
 Adsorption, 2011, 17, 489.
- Z. Veličković, G. D. Vuković, A. D. Marinković, M.-S. Moldovan, A. A. Perić-Grujić, P. S. Uskoković and M. Đ. Ristić, *Chem. Eng. J.*, 2012, 181, 174.
- 74. S. Bang, M. Patel, L. Lippincott and X. Meng, *Chemosphere*, 2005, 60, 389.
- 75. C. Xiong, M. He and B. Hu, *Talanta*, 2008, **76**, 772.
- 76. K. Jitmanee, M. Oshima and S. Motomizu, *Talanta*, 2005, 66, 529.
- 77. S. Chen, X. Zhan, D. Lu, C. Liu and L. Zhu, Anal. Chim. Acta, 2009, 634, 192.

- M. Mulugeta, G. Wibetoe, C. J. Engelsen and W. Lund, J. Anal. At. Spectrom., 2010, 25, 169.
- 79. P. Liang and R. Liu, Anal. Chim. Acta, 2007, 602, 32.
- 80. G. T. Macarovscha, G. G. Bortoleto and S. Cadore, *Talanta*, 2007, **71**, 1150.
- 81. C. Huang, B. Hu and Z. Jiang, *Spectrochim. Acta, Part B*, 2007, **62**, 454.