Supporting Information

An Improved One-Pot Multicomponent Strategy for the Preparation of Thiazoline, Thiazolidinone and Thiazolidinol Scaffolds

K. Appalanaidu, ^a Tulshiram Dadmal,^a N. Jagadeesh Babu^b and Ravindra M. Kumbhare*^a

^aFluoroorganics Division, ^bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology (CSIR), Hyderabad-500 007 (India) E-mail: <u>kumbhare@iict.res.in</u>, Fax :(+) 91-40-27193185

Table of Contents:

1.	X-ray structure of product 4j		S2-S3
2.	Experimental section		S4-S12
3.	Copies of ¹ H and ¹³ C NMR spectra of products	4a-j	S13-S22
4.	Copies of ¹ H and ¹³ C NMR spectra of products	6a-i	S23-S31
5.	Copies of ¹ H and ¹³ C NMR spectra of products	8a-h	S32-S39

1. X-ray structure of product (4j; Table 3; entry j)

X-ray data for the compound were collected at room temperature using a Bruker Smart Apex CCD diffractometer with graphite monochromated MoK α radiation (λ =0.71073Å) with ω -scan method.¹ Preliminary lattice parameters and orientation matrices were obtained from four sets of frames. Unit cell dimensions were determined using 5202 reflections. Integration and scaling of intensity data were accomplished using SAINT program.¹ The structures were solved by Direct Methods using SHELXS97² and refinement was carried out by full-matrix least-squares technique using SHELXL97.² Anisotropic displacement parameters were included for all non-hydrogen atoms. All H atoms were positioned geometrically and treated as riding on their parent C atoms, with C-H distances of 0.93--0.97 Å, and with U_{iso}(H) = $1.2U_{eq}$ (C) or $1.5U_{eq}$ for methyl atoms. H bound to N was located from the difference Fourier map.

<u>Crystal data for 4j (table 3)</u>: $C_{20}H_{25}N_2O_2S_1^+$. Br⁻, M = 437.39, brown plate, 0.35 x 0.20 x 0.10 mm³, monoclinic, space group $P2_1/c$ (No. 14), a = 11.7828(8), b = 11.0859(7), c = 16.1335(10) Å, $\beta = 93.1990(10)^\circ$, V = 2104.1(2) Å³, Z = 4, Dc = 1.381 g/cm³, $F_{000} = 904$, CCD area detector, MoK α radiation, $\lambda = 0.71073$ Å, T = 293(2)K, $2\theta_{max} = 50.0^\circ$, 19639 reflections collected, 3696 unique ($R_{int} = 0.0202$), Final GooF = 1.040, $R_1 = 0.0293$, wR2 = 0.0797, R indices based on 3291 reflections with $I > 2\sigma(I)$ (refinement on F^2), 241 parameters, $\mu = 2.069$ mm⁻¹. CCDC 1410087 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0) 1223 336 033; email: deposit@ccdc.cam.ac.uk.

<u>References</u>:

- SMART & SAINT. Software Reference manuals. Versions 6.28a & 5.625, Bruker Analytical X-ray Systems Inc., Madison, Wisconsin, U.S.A., 2001.
- Sheldrick, G. M. SHELXS97 and SHELXL97, Programs for crystal structure solution and refinement; University of Gottingen: Germany, 1997.

Fig. ORTEP molecular diagram of 4j

Figure caption: The molecular structure of 4j with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius. The thiazoline derivative has crystallized in the form of a HBr salt. Dotted lines indicate hydrogen bonding between the protonated N2 atom and the bromide ion.

Experimental Section

All solvents were distilled before use. Dry reactions were conducted under a nitrogen atmosphere. Crude products were purified by column chromatography on silica gel (60–120 mesh). Thin-layer chromatography plates were visualized by exposure to ultraviolet light, exposure to iodine vapors. IR spectra were recorded with an FTIR spectrometer. ¹H, ¹⁹F, and ¹³C (proton decoupled) NMR spectra were recorded in CDCl₃ with 500 MHz NMR spectrometers. Chemical shifts (δ) are reported in parts per million (ppm) relative to tetramethylsilane, which was used as an internal standard. Coupling constants (*J*) are quoted in Hertz (Hz). High-resolution mass spectral (HRMS) were recorded using electro spray ionization (ESI) and an orbitrap mass analyser.

General procedure for synthesis of 2-aminothiazolin derivatives:

The mixture of and primary amine 1 (2 mmol) and carbon disulphide 2 (1 mmol) in DMF was allowed to microwave irradiation. The power was set at 160 W and the temperature was set at 100 0 C. After 5 min, the mixture was allowed to room temperature and added Phenacyl bromide or 3-Bromoacylcoumarine (3a-b) and again allowed to micro wave irradiation for 5 min under the same conditions. After five minutes the reaction mixture allowed to room temperature. The resultant mixture was and poured in to crushed ice and filtered to afford HBr salt of thiazoline which is further neutralized with saturated sodium bicarbonate and organic layer extracted with ethyl acetate, dried with Na₂SO₄. Finally, the desired compounds (4a-j) table 3 achieved by solvent evaporation under reduced pressure in good to excellent yield listed in table 3.

(Z)-*N*-(3,4-diphenylthiazol-2(3H)-ylidene)aniline (4a): Solid, m.p. 188-190^oC. ¹H NMR (CDCl₃): δ = 5.96 (s, 1H), 7.01-7.06 (m, 3H), 7.09 (dd, *J* = 7.9 Hz, 2H), 7.17-7.24 (m, 3H), 7.25-7.28 (m, 3H), 7.29-7.34 (m, 4H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 97.24, 121.60, 123.21, 127.51, 128.14, 128.15, 128.25, 128.78, 128.83, 129.35, 131.54, 137.85, 139.90, 151.73, 16.22 ppm. IR (KBr): 1590, 1540, 1520, 1255, 1170, 1027 cm⁻¹. MS (ESI): *m*/*z* = 329 [M + H]⁺. HRMS (ESI): calcd. For C₂₁H₁₇N₂S 329.111245 [M + H]⁺; found 329.11042.

(Z)-4-methoxy-N-(3-(4-methoxyphenyl)-4-phenylthiazol-2(3H)-ylidene)aniline (4b): Solid, m.p. 127-129°C. ¹H NMR (CDCl₃, 500 MHz): $\delta = 3.79-3.82$ (m, 6H), 6.76 (s, 1H), 6.92 (d, J = 9.0 Hz, 2H), 6.98 (d, J = 9.0 Hz, 2H), 7.11-7.15 (m, 2H), 7.23-7.28 (m, 2H), 7.34 (t, J = 7.4 Hz, 1H), 7.41 (d, J = 9.0 Hz, 2H), 7.54 (d, J = 9.0 Hz, 2H) ppm. ¹³C NMR (DMSO- d⁶, 75 MHz): $\delta = 54.53$, 54.65, 104.16, 114.34, 114.65, 124.50, 125.55, 126.97, 127.51, 128.19, 128.89, 129.12, 141.61, 158.61, 159.99, 169.77 ppm. IR (KBr): 1607, 1557, 1510, 1251, 1175, 1022 cm⁻¹. MS (ESI): m/z = 389 [M + H]⁺. HRMS (ESI): calcd. For C₂₃H₂₁O₂N₂S 389.13183 [M + H]⁺; found 389.13142.

(*Z*)-*N*-(3-benzyl-4-phenylthiazol-2(3H)-ylidene)-1-phenylmethanamine (4c): Solid, m.p. 165-167°C. ¹H NMR (CDCl₃, 500 MHz): $\delta = 4.64$ (d, J = 5.2 Hz, 2H), 5.82 (s, 2H), 6.58 (s, 1H), 7.07-7.36 (m, 12H), 7.41-7.57 (m, 3H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 49.82, 50.85, 104.59, 127.08, 127.81, 127.82, 128.09, 128.21, 128.50, 128.65, 129.09, 129.20, 130.63, 132.63, 133.15, 143.06, 168.42 ppm. IR (KBr): 1595, 1447, 1348, 1128, 955 cm⁻¹. MS (ESI): m/z = 357 [M + H]⁺. HRMS (ESI): calcd. For C₂₃H₂₁N₂S 357.14200 [M + H]⁺; found 357.14179.

(*Z*)-*N*-(3-cyclohexyl-4-phenylthiazol-2(3H)-ylidene)cyclohexanamine (4d): Solid, m.p. 210-212°C. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.78-0.98$ (m,1H), 1.19-1.43(m, 3H), 1.47-1.95 (m, 12H), 1.99-2.14 (m, 2H), 2.22-2.42 (m, 2H), 3.19-3.37 (m, 1H), 5.09-5.27 (m, 1H), 6.51 (s, 1H), 7.32-7.42 (m, 2H), 7.42-7.61 (m, 3H) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 24.43$, 25.08, 25.32, 31.01, 31.21, 61.71, 62.01, 105.04, 128.33, 130.29, 130.42, 13.50, 143.00, 167.18 ppm. IR (KBr): 1563, 1446, 1342, 1117, 1004 cm⁻¹. MS (ESI): *m*/*z* = 341 [M + H]⁺. HRMS (ESI): calcd. For C₂₁H₂₉N₂S 341.20460 [M + H]⁺; found 341.20407.

(Z)-1-(furan-2-yl)-N-(3-(furan-2-ylmethyl)-4-phenylthiazol-2(3H)-

ylidene)methanamine (4e): Solid, m.p. 139-141°C. ¹H NMR (CDCl₃, 500 MHz): δ = 4.70 (d, J = 6.0 Hz, 2H), 5.69 (s, 2H), 6.15-6.49 (m, 3H), 6.58 (s, 1H), 6.98 (d, J = 3.8 Hz, 1H), 7.24-7.31 (m, 1H), 7.32-7.38 (m, 1H), 7.39-7.65 (m, 5H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 43.17, 44.47, 104.00, 110.30, 110.48, 110.58, 112.60, 127.83, 129.04, 129.77, 130.76, 142.93, 143.04, 143.19, 144.55, 146.80 ppm. IR (KBr): 1660, 1585, 1343, 1145, 1012, 740 cm⁻¹. MS (ESI): m/z = 337 [M + H]⁺. HRMS (ESI): calcd. For C₁₉H₁₇O₂N₂S 337.10053 [M + H]⁺; found 337.09987.

(Z)-N-(3-butyl-4-phenylthiazol-2(3H)-ylidene)butan-1-amine (4f): Solid, m.p. 154-156^oC. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.70$ (t, J = 7.3 Hz, 3H), 0.99 (t, J = 7.3, 3H), 1.17-1.28 (m, 2H), 1.42-1.52 (m, 2H), 1.54-1.63 (m, 2H), 1.86-1.94 (m, 2H), 3.47-3.54 (m, 2H), 4.44 (t, J = 7.6 Hz, 2H), 6.54 (s, 1H), 7.30-7.40 (m, 2H), 7.48-7.61 (m, 3H) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 13.19$, 13.48, 18.92, 19.97, 29.39, 29.42, 47.61, 48.12, 103.42, 128.20, 129.07, 129.28, 130.61, 142.89, 167.44 ppm. IR (KBr): 1592, 1486, 1360, 1148, 1106, 982 cm⁻¹. MS (ESI): m/z = 289 [M + H]⁺. HRMS (ESI): calcd. For C₁₇H₂₅N₂S 289.17330 [M + H]⁺; found 289.17354.

(Z)-3-(3-phenyl-2-(phenylimino)-2,3-dihydrothiazol-4-yl)-2H-chromen-2-one (4g): Solid, m.p. 307-310°C. ¹H NMR (DMSO- d⁶, 500 MHz): $\delta = 7.27-7.45$ (m, 6H), 7.46-7.70 (m, 9H), 8.17 (s, 1H) ppm. ¹³C NMR (DMSO- d⁶, 75 MHz): $\delta = 107.80$, 116.26, 116.8, 117.89, 121.05, 124.25, 125.11, 127.66, 128.51, 129.34, 129.79, 130.13, 130.39, 133.47, 133.80, 135.54, 147.11, 153.43, 157.88, 167.49 ppm. IR (KBr): 1718, 1602, 1560, 1490, 1450, 1361, 1212, 1100, 1038 cm⁻¹. MS (ESI): m/z = 397 [M + H]⁺. HRMS (ESI): calcd. For C₂₄H₁₇O₂N₂S 397.10053 [M + H]⁺; found 397.10031.6.

(*Z*)-3-(3-benzyl-2-(benzylimino)-2,3-dihydrothiazol-4-yl)-2H-chromen-2-one (4h): Solid, m.p. 198-200°C. ¹H NMR (DMSO-d⁶, 500 MHz): δ = 4.64 (br. s, 2H), 5.83 (s, 2 H), 6.87 (s, 1H), 7.06-7.41 (m, 12H), 7.43-7.52 (m, 1H), 7.60-7.70 (m, 1H), 7.73 (s, 1H) ppm. ¹³C NMR (DMSO-d⁶, 75 MHz): δ = 48.99, 49.26, 108.15, 114.93, 114.98, 116.62, 123.66, 125.28, 126.27, 126.89, 127.39, 127.83, 131.73, 132.28, 135.23, 145.89, 152.59, 157.41, 167.20 ppm. IR (KBr): 1723, 1606, 1560, 1454, 1361, 1216, 1135, 1083 cm⁻¹. MS (ESI): m/z = 425 [M + H]⁺. HRMS (ESI): calcd. For C₂₆ H₂₁O₂N₂S 425.13183 [M + H]⁺; found 425.13185.

(*Z*)-3-(3-cyclohexyl-2-(cyclohexylimino)-2,3-dihydrothiazol-4-yl)-2H-chromen-2-one (4i): Solid, m.p. 245-247°C. ¹H NMR (DMSO-d⁶, 500 MHz): $\delta = 1.07$ -1.49 (m, 6H), 1.51-2.15 (m, 14H), 3.35-3.45 (m, 1H), 4.11-4.37 (m, 1H), 7.40-7.50 (m, 2H), 7.69-7.85 (m, 2H), 8.22- 8.32 (m, 1H), 8.77-9.08 (m, 1H) ppm. ¹³C NMR (DMSO-d⁶, 75 MHz): $\delta = 23.56$, 24.59, 24.66, 24.93, 28.17, 30.87, 60.42, 60.84, 109.19, 116.46, 117.99, 118.43, 125.04, 129.46, 133.53, 136.61, 147.42, 153.94, 159.32, 166.96 ppm. IR (KBr): 1727, 1610, 1564, 1455, 1366, 1220, 1129, 1090 cm⁻¹. MS (ESI): *m*/*z* = 409 [M + H]⁺. HRMS (ESI): calcd. For C₂₄ H₂₉ O₂ N₂ S 409.19443 [M + H]⁺; found 409.19345.

(*Z*)-3-(3-butyl-2-(butylimino)-2,3-dihydrothiazol-4-yl)-2H-chromen-2-one (4j): Solid, m.p. 166-168^oC. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.81$ (t, J = 7.3 Hz, 3H), 0.98 (t, J = 7.3, 3H), 1.30-1.39 (m, 2H), 1.40-1.50 (m, 2H), 1.67-1.77 (m, 2H), 1.82-1.91 (m, 2H), 3.45-3.53 (m, 2H), 4.37 (t, J = 7.8 Hz, 2H), 6.95-7.04 (m, 1H), 7.38-7.47 (m, 2H), 7.68-7.74 (m, 2H), 8.10-8.16 (m, 1H) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 13.45$, 19.19, 19.91, 29.39, 29.60, 48.07, 48.17, 108.31, 116.40, 116.68, 117.78, 125.33, 129.23, 133.91, 136.48, 147.41, 154.21, 158.76, 167.20 ppm. IR (KBr): 1722, 1615, 1574, 1446, 1359, 1226, 1132, 1085 cm⁻¹. MS (ESI): m/z = 357 [M + H]⁺. HRMS (ESI): calcd. For C₂₀H₂₅O₂N₂S 357.16313 [M + H]⁺; found 357.16375.

General procedure for synthesis of 2-iminothiazolidin-4-one ester derivatives (6a-i): The mixture of and primary amine 1 (2 mmol) and carbon disulphide 2 (1 mmol) in DMF was allowed to microwave irradiation. The power was set at 160 W and the temperature was set at 100 $^{\circ}$ C. After 5 min, the mixture was allowed to room temperature and added DMAD or DEAD (5a-b) and the reaction mixture was stirred at room temperature for 10– 15 min. After completion of the reaction, the resultant mixture was diluted with water and admixed with ethyl acetate (20 mL). The ethyl acetate layer was washed with brain solution (5 mL), dried over anhydrous Na₂SO₄, concentrated under reduced pressure and purified over a silica gel column (4% EtOAc/hexane) to give desired products (6a-i, table 4) in good yield.

(*Z*)-Ethyl 2-((*Z*)-4-oxo-3-phenyl-2-(phenylimino)thiazolidin-5-ylidene)acetate (6a): Solid, m.p. 76-78°C. ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.32$ (t, *J* = 7.2 Hz, 3H), 4.27 (q, *J* = 7.2 Hz, 2H), 6.94 (d, *J* = 7.6 Hz, 2H), 6.99 (s, 1H), 7.15 (t, *J* = 7.4 Hz, 1H), 7.33 (t, *J* = 7.7 Hz, 2H), 7.40-7.59 (m, 5H) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.10$, 61.73, 116.94, 120.87, 125.17, 127.83, 129.11, 129.24, 129.29, 133.99, 141.09, 147.30, 151.68, 164.58, 165.91 ppm. IR (KBr): 1705, 1692, 1642, 1492, 1367, 1313, 1192, 1027 cm⁻¹. MS (ESI): *m*/*z* = 353 [M + H]⁺. HRMS (ESI): calcd. For C₁₉H₁₇O₃N₂S 353.09544 [M + H]⁺; found 353.09595.

(Z)-ethyl 2-((Z)-3-(4-methoxyphenyl)-2-((4-methoxyphenyl)imino)-4-oxothiazolidin-5-ylidene)acetate (6b): Viscous liquid. ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.32$ (t, J = 7.3 Hz, 3H), 3.80 (s, 3H), 3.84 (s, 3H), 4.27 (q, J = 7.3 Hz, 2H), 6.84-6.91 (m, 4H), 6.97 (s, 1H), 7.01-7.06 (m, 2H), 7.31-7.36 (m, 2H) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.09$, 55.39, 55.44, 61.65, 114.42, 114.60, 116.57, 122.08, 126.49, 128.89, 140.55, 141.22, 151.78, 157.12, 159.75, 164.78, 165.94 ppm. IR (neat): 1712, 1697, 1630, 1627, 1509, 1460, 1373, 1237, 1187, 1036 cm⁻¹. MS (ESI): $m/z = 413 [M + H]^+$. HRMS (ESI): calcd. For C₂₁H₂₁O₅N₂S 413.11657 [M + H]⁺; found. 413.11619.

(*Z*)-ethyl 2-((*Z*)-3-benzyl-2-(benzylimino)-4-oxothiazolidin-5-ylidene)acetate (6c): Solid, m.p. 125-127°C. ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.33$ (t, J = 6.9 Hz, 3H), 4.29 (q, J = 6.9 Hz, 2H), 4.67 (s, 2H), 5.06 (s, 2H), 6.92 (s, 1H), 7.22-7.38 (m, 8H), 7.40-7.48 (m, 2H) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.15$, 46.01, 55.89, 61.62, 116.14, 127.02, 127.40, 127.86, 128.42, 128.88, 135.78, 138.60, 140.83, 149.55, 164.72, 165.90 ppm. IR (neat): 1724, 1686, 1625, 1635, 1512, 14702 1369, 1240, 1190, 1040 cm⁻¹. MS (ESI): *m/z* = 381 [M + H]⁺. HRMS (ESI): calcd. For C₂₁H₂₁O₃N₂S 381.12674 [M + H]⁺; found. 381.12662.

(*Z*)-ethyl 2-((*Z*)-3-(furan-2-ylmethyl)-2-((furan-2-ylmethyl)imino)-4-oxothiazolidin-5-ylidene)acetate (6d): Solid, m.p. 89-91°C. ¹H NMR (CDCl₃, 500 MHz): $\delta = 1.34$ (t, *J* = 7.2 Hz, 3H), 4.30 (q, *J* = 7.2 Hz, 2H), 4.65 (s, 2H), 5.03 (s, 2H), 6.21-6.24 (m, 1H), 6.32-6.35 (m, 2H), 6.93 (s, 1H), 7.31-7.34 (m, 1H), 7.36-7.40 (m, 1H) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.14$, 38.66, 49.10, 61.70, 107.09, 109.52, 110.30, 110.37, 116.44, 140.41, 142.07, 142.32, 148.67, 150.46, 151.60, 164.30, 165.85 ppm. IR (KBr): 1721, 1651, 1613, 1381, 1316, 1195, 1026 cm⁻¹. MS (ESI): *m*/*z* = 361[M + H]⁺, 383 [M + Na]⁺. HRMS (ESI): calcd. For C₁₇H₁₆O₅N₂NaS 383.06721 [M + H]⁺; found. 383.06759.

(*Z*)-methyl 2-((*Z*)-4-oxo-3-phenyl-2-(phenylimino)thiazolidin-5-ylidene)acetate (6e): Solid, m.p. 128-130°C. ¹H NMR (CDCl₃, 500 MHz): δ = 3.82 (s, 3H), 6.90-6.97 (m, 2H), 7.00 (s, 1H), 7.15 (t, J = 7.4Hz, 1H), 7.33 (t, J = 7.7Hz, 2H), 7.41-7.59 (m, 5H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 52.52, 116.43, 120.84, 125.19, 127.79, 129.13, 129.24, 129.28, 133.93, 141.35, 147.26, 151.51, 164.50, 166.29 ppm. IR (KBr): 1711, 1690, 1607, 1387, 1316, 1191, 1022 cm⁻¹. MS (ESI): *m*/*z* = 339 [M + H]⁺, 361 [M + Na]⁺. HRMS (ESI): calcd. For C₁₈H₁₅O₃N₂S 339.07979 [M + H]⁺; found. 339.07990

(Z)-methyl 2-((Z)-3-(4-methoxyphenyl)-2-((4-methoxyphenyl)imino)-4oxothiazolidin-5-ylidene)acetate (6f): Viscous liquid. ¹H NMR (CDCl₃, 500 MHz): δ = 3.78-3.87 (m, 9H), 6.80-6.93 (m, 4H), 6.98 (s, 1H), 6.99-7.10 (m, 2H), 7.28-7.38 (m, 2H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 29.65, 55.36, 114.44, 114.63, 116.13, 122.02, 126.48, 128.90, 140.53, 141.53, 151.64, 157.17, 159.79, 164.75, 166.37 ppm. IR (KBr): 1722, 1680, 1617, 1377, 1326, 1181, 1020 cm⁻¹. MS (ESI): $m/z = 399 [M + H]^+$, 421 [M + Na]⁺. HRMS (ESI): calcd. For C₂₀ H₁₉O₅N₂S 399.10092 [M + H]⁺; found. 399.10195.

(*Z*)-methyl 2-((*Z*)-3-benzyl-2-(benzylimino)-4-oxothiazolidin-5-ylidene)acetate (6g): Solid, m.p. 130-132°C. ¹H NMR (CDCl₃, 500 MHz): δ = 3.84 (s, 3H), 4.67 (s, 2H), 5.06 (s, 2H), 6.92 (s, 1H), 7.25-7.35 (m, 8H), 7.41-7.45(m, 2H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 46.08, 52.48, 55.95, 115.67, 127.08, 127.43, 127.91, 128.46, 128.90, 135.77, 138.59, 141.18, 149.43, 164.70, 166.36 ppm. IR (KBr): 1718, 1692, 1620, 1380, 1330, 1190, 1025 cm⁻¹. MS (ESI): *m*/*z* = 367 [M + H]⁺; 389 [M + Na]⁺. HRMS (ESI): calcd. For C₂₀ H₁₉O₃N₂S 367.11109 [M + H]⁺; found. 367.11193.

(Z)-methyl 2-((Z)-3-(furan-2-ylmethyl)-2-((furan-2-ylmethyl)imino)-4oxothiazolidin-5-ylidene)acetate (6h): Solid, m.p. 123-125°C. ¹H NMR (CDCl₃, 500 MHz): $\delta = 3.85$ (s, 3H), 4.65 (s, 2H), 5.04 (s, 2H), 6.22-6.24 (m, 1H), 6.28-6.30 (m, 1H), 6.33-6.35 (m, 2H), 6.94 (s, 1H), 7.31-7.33 (m, 1H), 7.37-7.39 (m, 1H) ppm. ¹³C NMR $(CDCl_3, 75 \text{ MHz})$: $\delta = 38.70, 49.13, 52.53, 107.12, 109.55, 110.31, 110.38, 115.94$ 140.74, 142.09, 142.34, 148.64, 150.31, 151.55, 164.25, 166.27 ppm. IR (KBr): 1721, 1651, 1613, 1419, 1384, 1318, 1194, 1024 cm⁻¹. MS (ESI): $m/z = 347 [M + H]^+$, 369 [M $+ Na^{+}$. HRMS (ESI): calcd. For C₁₆H₁₅ O₅N₂S 347.06962 [M + H]⁺; found. 347.07009. (Z)-methyl 2-((Z)-3-butyl-2-(butylimino)-4-oxothiazolidin-5-ylidene)acetate (6i): Solid, m.p. 78-80°C. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.90-0.99$ (m, 6H), 1.30-1.44 (m, 4H), 1.61-1.66 (m, 4H), 3.44 (t, *J* = 7.02 Hz, 2H), 3.78-3.88 (m, 5H), 6.88 (s, 1H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 13.67, 13.82, 19.93, 20.39, 29.44, 29.64, 32.74, 42.61, 52.56, 114.67, 141.73, 147.89, 164.80, 166.55 ppm. IR (KBr): 1715, 1645, 1613, 1432, 1392, 1325, 1208, 1008 cm⁻¹. MS (ESI): m/z = 299 [M + H]⁺. HRMS (ESI): calcd. For $C_{14}H_{23}O_{3}N_{2}S$ 299.14239 [M + H]⁺; found. 299.14258.

General procedure for synthesis of 2-imino-4-trifluoromethyl thiazolidinol derivatives(8a-h):

The mixture of and primary amine 1 (2 mmol) and carbon disulphide 2 (1 mmol) in DMF was allowed to microwave irradiation. The power was set at 160 W and the temperature was set at 100 $^{\circ}$ C. After 5 min, the mixture was allowed to room temperature and added 3-bromo-1,1,1-trifluoropropan-2-one 7 drop wise at room temperature and continued stirring for 10-15 min at room temperature. After completion of the reaction, the resultant

mixture was diluted with water and admixed with ethyl acetate (20 mL). The ethyl acetate layer was washed with sodium bicarbonate solution and then brain solution (5 mL), dried over anhydrous Na₂SO₄, concentrated under reduced pressure and purified over a silica gel column (6% EtOAc/hexane) to give desired products (8a-h, table 5) in good yield.

(*Z*)-3-phenyl-2-(phenylimino)-4-(trifluoromethyl)thiazolidin-4-ol (8a): Solid, m.p. 154-156°C. ¹H NMR (CDCl₃, 500 MHz): $\delta = 3.36$ (d, J = 12.4 Hz, 1H), 3.60 (br. s, 1H), 3.73 (d, J = 12.4 Hz, 1H), 6.85-6.89 (m, 2H), 7.02-7.07 (m, 1H), 7.23-7.28 (m, 2H), 7.35-7.49 (m, 5H) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 34.74$, 91.09 (q, J = 31.0 Hz), 121.54, 123.99, 128.93, 129.11, 129.28, 129.56, 130.44, 136.73, 150.69, 158.52 ppm. IR (KBr): 3025, 1619, 1585, 1490, 1324, 1183 cm⁻¹. MS (ESI): m/z = 339 [M + H]⁺. HRMS (ESI): calcd. For C₁₆H₁₄ON₂F₃S 339.07734 [M + H]⁺; found 339.07719.

(Z)-3-(4-methoxyphenyl)-2-((4-methoxyphenyl)imino)-4

(trifluoromethyl)thiazolidin-4-ol (8b): Solid, m.p. 142-144^oC. ¹H NMR (CDCl₃, 500 MHz): $\delta = 3.33$ (d, J = 12.2 Hz, 1H), 3.69 (d, J = 12.2 Hz, 1H), 3.76 (s, 3H), 3.81 (s, 3H), 6.80 (br. s, 4H), 6.94-6.98 (m, 2H), 7.25-7.29 (m, 2H) ppm.¹³C NMR (CDCl₃, 75 MHz): 34.37, 55.32, 55.35, 90.93 (q, J = 31.7), 114.07, 114.65, 122.55, 122.84 (q, J = 287.5), 129.11, 131.44, 144.19, 156.13, 159.26, 159.58 ppm. IR (KBr): 3030, 1620, 1590, 1485, 1330, 1189 cm⁻¹. MS (ESI): m/z = 399 [M + H]⁺. HRMS (ESI): calcd. For C₁₈H₁₈O₃N₂F₃S 399.09847 [M + H]⁺; found 399.09699.

(Z)-3-(2,4-dimethoxyphenyl)-2-((2,4-dimethoxyphenyl)imino)-4-

(trifluoromethyl)thiazolidin-4-ol (8c): Solid, m.p. 128-130°C. ¹H NMR (CDCl₃, 500 MHz): $\delta = 3.32$ (d, J = 12.1 Hz, 1H), 3.62 (d, J = 12.1 Hz, 1H), 3.72 (s, 3H), 3.77 (s, 3H), 3.82 (s, 3H), 3.97 (s, 3H), 5.63 (br. s, 1H), 6.35-6.46 (m, 2H), 6.58-6.64 (m, 2H), 6.69-6.76 (m, 1H), 7.21-7.28 (m, 1H) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 35.31$, 55.33, 55.45, 55.77, 56.90, 91.73 (q, J = 30.7 Hz), 99.84, 100.9, 103.74, 106.53, 119.06, 122.15, 124.62, 133.36, 134.20, 152.06, 155.60, 157.06, 159.51, 160.98 ppm. IR (KBr): 1612, 1506, 1462, 1187, 1158, 1036 cm⁻¹. MS (ESI): m/z = 459 [M + H]⁺. HRMS (ESI): calcd. For C₂₀H₂₂O₅N₂F₃S 459.11960 [M + H]⁺; found 459.11822.

(Z)-3-(3-chloro-4-fluorophenyl)-2-((3-chloro-4-fluorophenyl)imino)-4-

(trifluoromethyl)thiazolidin-4-ol (8d): Solid, m.p. 146-148°C. ¹H NMR (CDCl₃, 500

MHz): $\delta = 3.41$ (d, J = 12.4 Hz, 1H), 3.55 (br. s, 1H), 3.79 (d, J = 12.4 Hz, 1H), 6.70-6.75 (m, 1H), 6.93 (dd, J = 6.6 Hz, 1H), 7.03 (t, J = 8.5 Hz, 1H), 7.21-7.29 (m, 2H), 7.44 (dd, J = 6.6 Hz, 1H) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 35.02$, 91.32 (q, J = 32.2), 116.66 (d, J = 21.9 Hz), 117.27 (d, J = 21.9 Hz), 120.96 (d, J = 6.6 Hz), 123.35, 124.37, 130.34 (d, J = 6.6 Hz), 132.57, 132.80, 135.45, 146.73, 153.34, 156.56, 159.15, 160.00 ppm. IR (KBr): 1612, 1506, 1462, 1187, 1158, 1036 cm⁻¹. IR (KBr): 1581, 1494, 1259, 1184, 1014 cm⁻¹. MS (ESI): m/z = 443 [M + H]⁺. HRMS (ESI): calcd. For C₁₆H₁₀ON₂Cl₂F₅S 442.98056 [M + H]⁺; found 442.98004.

(Z)-4-(trifluoromethyl)-3-(3-(trifluoromethyl)phenyl)-2-((3-

(trifluoromethyl)phenyl)imino)thiazolidin-4-ol (8e): Solid, m.p. 106-108^oC. ¹H NMR (CDCl₃, 500 MHz): δ = 3.41 (d, *J* = 12.5 Hz, 1H), 3.81 (d, *J* = 12.5 Hz, 1H), 7.04 (d, *J* = 7.6 Hz, 1H), 7.13 (br. s, 1H), 7.28-7.42 (m, 2H), 7.54-7.73 (m, 4H) ppm. ¹³C NMR (CDCl₃, 75 MHz): δ = 35.2, 91.1 (q, *J* = 32.4 Hz), 118.6, 120.7, 121.7, 124.4, 124.8, 125.3, 125.9, 127.3, 129.5, 129.9, 131.3 (q, *J* = 32.4 Hz), 131.4 (q, *J* = 32.4 Hz), 133.9, 137.2, 150.4, 159.0 ppm. IR (KBr): 3160, 2660, 1583, 1451, 1334, 1158 cm⁻¹. MS (ESI): *m*/*z* = 475 [M + H]⁺. HRMS (ESI): calcd. for C₁₈H₁₂ON₂F₉S 475.0498 [M + H]⁺; found 475.0497.

(*Z*)-3-benzyl-2-(benzylimino)-4-(trifluoromethyl)thiazolidin-4-ol (8f): Solid, m.p. 108-110°C. ¹H NMR (CDCl₃, 500 MHz): $\delta = 3.80$ (d, J = 12.9 Hz, 1H), 4.37-4.56 (m, 3H), 5.05 (d, J = 17.4 Hz, 1H), 5.20 (d, J = 17.4 Hz, 1H), 6.92-7.01 (m, 2H), 7.20-7.38 (m, 8H) ppm. ¹³C NMR (DMSO- d⁶, 75 MHz): $\delta = 33.00$, 45.77, 49.33, 92.90 (q, J = 32.7 Hz), 125.38, 125.87, 125.94, 126.61, 126.98, 127.43, 131.92, 132.85, 169.47 ppm. IR (KBr): 3094, 1617, 1201, 1184, 1028 cm⁻¹. MS (ESI): m/z = 367 [M + H]⁺. HRMS (ESI): calcd. For C₁₈H₁₈ON₂F₃S 367.10865 [M + H]⁺; found 367.10863.

(Z)-3-(furan-2-ylmethyl)-2-((furan-2-ylmethyl)imino)-4-

(trifluoromethyl)thiazolidin-4-ol (8g): Solid, m.p. 150-152°C. ¹H NMR (CDCl₃, 500 MHz): $\delta = 3.85$ (d, J = 12.8 Hz, 1H), 4.42 (d, J = 12.8 Hz, 1H), 4.58 (d, J = 15.6 Hz, 1H), 4.81 (d, J = 15.6 Hz, 1H), 4.93 (d, J = 17.1 Hz, 1H), 5.14 (d, J = 17.1 Hz, 1H), 6.35-6.42 (m, 2H), 6.43-6.58 (m, 2H), 7.34-7.39 (m, 1H), 7.41-7.46 (m, 1H), ¹³C NMR (CDCl₃, 75 MHz): $\delta = 34.81$, 39.86, 55.43, 91.00 (q, J = 32.5 Hz), 109.66, 110.91, 114.30, 122.64, 142.00, 142.83, 150.04, 156.39, 157.02 ppm. (KBr): 3076, 1626, 1414, 1176, 1018 cm⁻¹.

MS (ESI): $m/z = 347 [M + H]^+$. HRMS (ESI): calcd. For C₁₄H₁₄O₃N₂F₃S 347.06717 [M + H]⁺; found 347.06733.

(*Z*)-3-butyl-2-(butylimino)-4-(trifluoromethyl)thiazolidin-4-ol (8h): Solid, m.p. 98-100°C. ¹H NMR (CDCl₃, 500 MHz): $\delta = 0.86$ -1.03 (m, 6H), 1.26-1.63 (m, 5H), 1.65-1.97 (m, 3H), 3.29-3.54 (m, 2H), 3.62-3.90 (m, 3H), 4.26-4.43 (m, 1H) ppm. ¹³C NMR (CDCl₃, 75 MHz): $\delta = 13.49$, 19.63, 19.80, 28.59, 30.92, 33.61, 44.95, 47.87, 95.05 (q, *J* = 32.7 Hz), 122.45 (q, *J* = 287.6 Hz), 168.88 ppm. IR (KBr): 3064, 2966, 1627, 1264, 1179, 1094 cm⁻¹. MS (ESI): *m*/*z* = 299 [M + H]⁺. HRMS (ESI): calcd. For C₁₂H₂₂ON₂F₃S 299.13995 [M + H]⁺; found 299.13999.

2. Copies of ¹H and ¹³C NMR spectra of products 4a-j

¹H NMR spectra of 4a (Table 1, entry a)

¹H NMR spectra of 4a

¹³C NMR spectra of 4a

¹H NMR spectra of 4b

¹³C NMR spectra of 4b

¹H NMR spectra of 4c

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

¹H NMR spectra of 4d

¹H NMR spectra of 4e

¹H NMR spectra of 4f

¹H NMR spectra of 4g

¹H NMR spectra of 4h

¹H NMR spectra of 4i

¹³C NMR spectra of 4i

¹H NMR spectra of 4j

¹H NMR spectra of 6a

¹H NMR spectra of 6b

¹H NMR spectra of 6c

¹H NMR spectra of 6d

¹H NMR spectra of 6e

¹H NMR spectra of 6f

S28

¹H NMR spectra of 6g

¹H NMR spectra of 6h

¹H NMR spectra of 6i

¹H NMR spectra of 8a

¹H NMR spectra of 8d

¹H NMR spectra of 8e

¹H NMR spectra of 8f

¹H NMR spectra of 8g

¹H NMR spectra of 8h

