Friedel-Crafts Reaction of Indoles with Vicinal Tricarbonyl Compounds Generated in Situ from 1,3-Dicarbonyl Compounds and TEMPO: Highly Selective Synthesis of Tertiary Alcohol

Jianwei Yan^a*, Tianjun Ni^b, Fulin Yan^a, Jixian Zhang^a, Fangfang zhuang^a

^aSchool of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China;

^bDepartment of Chemistry, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China

jwyansimm@163.com

Supporting Information

List of contents

 General Considerations Characterization data of Compounds 3aa-3oa Characterization data of Compound 4ab-4ai Characterization data of Compound 6aa-6ba ¹H and ¹³C NMR Spectra of Compounds 3aa-3oa ¹H and ¹³C NMR Spectra of Compounds 4ab-4ah ¹H and ¹³C NMR Spectra of Compound 6aa-6ba 	S2 S2-7 S8-9 S10 S11-28 S29-35 S36-37		
		8. X-ray crystal structure of 3aa	S38

1. General Considerations.

All ¹H NMR and ¹³C NMR spectra were measured in CDCl₃ using a Bruker ASCEND 400 spectrometer. Chemical shifts are expressed in ppm and *J* values are given in Hz. High resolution mass spectra were recorded on bruker micrOTOF-QIII MS (ESI). Column chromatography was performed with 200-300 mesh silica gel using flash column techniques. Melting points (uncorrected) were determined on a yalixien X-4 melting point apparatus. All the solvents and reagents were used directly as obtained commercially unless otherwise noted.

Procedure for the synthesis of **3aa**. A solution of indole (1a) (117 mg, 1.0 mmol), ethyl acetoacetate (2a) (143 mg, 1.1 mmol), and TEMPO (468 mg, 3.0 mmol) in acetic acid (5.0 mL) under an air atmosphere was stirred at 50 °C for 1 h (complete consumption of indicated by TLC). The mixture was then concentrated in vacuo to give a residue that was dissolved in ethyl acetate (50 mL). Washing the ethyl acetate solution with aqueous NaHCO₃ (2×30 mL) followed by drying over sodium sulphate and concentration in vacuo gave a residue that was subjected to flash chromatography on silica gel (petroleum ether/ethyl acetate = 2:1 as an eluent) to afford **3aa** as a white solid (85%).

2. Characterization Data of Compounds 3aa-3oa:

ethyl 2-hydroxy-2-(1H-indol-3-yl)-3-oxobutanoate (3aa)

White solid: m.p. 136-137 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.37 (d, *J* = 2.5 Hz, 1H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.19 (t, *J* = 7.4 Hz, 1H), 7.11 (t, *J* = 7.4 Hz, 1H), 4.81 (s, 1H), 4.42 – 4.24 (m, 2H), 2.25 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.9, 170.4, 136.6, 125.1, 124.3, 122.7, 120.5, 120.3, 111.9, 111.6, 82.3, 62.9, 25.1, 14.2; HRMS calcd for C₁₄H₁₅NO₄Na (M+Na)⁺ 284.0893, found 284.0907.

ethyl 2-(5-fluoro-1H-indol-3-yl)-2-hydroxy-3-oxobutanoate (3ba)

White solid: m.p. 129-130 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 7.46 (d, J = 2.7 Hz, 1H), 7.28 – 7.20 (m, 2H), 6.95 (td, J = 9.0, 2.5 Hz, 1H), 4.80 (s, 1H), 4.45 – 4.27 (m, 2H), 2.26 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.4, 170.2, 158.0 (d, J = 233.9 Hz), 132.97, 125.83,

125.42 (d, J = 10.5 Hz), 112.1 (d, J = 9.7 Hz), 111.9 (d, J = 4.8 Hz), 110.1 (d, J = 26.3 Hz), 105.4 (d, J = 24.5 Hz), 82.1, 62.9, 24.8, 14.0; HRMS calcd for C₁₄H₁₄FNO₄Na (M+Na)⁺ 302.0799, found 302.0812.

ethyl 2-(5-chloro-1H-indol-3-yl)-2-hydroxy-3-oxobutanoate (3ca)

White solid: m.p. 144-145 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.55 (s, 1H), 7.34 (s, 1H), 7.18 (d, *J* = 8.5 Hz, 1H), 7.12 (d, *J* = 8.6 Hz, 1H), 4.81 (s, 1H), 4.45 – 4.24 (m, 2H), 2.24 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, Acetone) δ 204.6, 171.1, 136.3, 127.7, 127.0, 125.4, 122.6, 121.1, 113.8, 112.7, 83.5, 62.7, 14.3; HRMS calcd for C₁₄H₁₄ClNO₄Na (M+Na)⁺ 318.0504, found 318.0516.

ethyl 2-(5-bromo-1H-indol-3-yl)-2-hydroxy-3-oxobutanoate (3da)

White solid: m.p. 151-152 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 7.75 (s, 1H), 7.45 (s, 1H), 7.29 (d, *J* = 7.8 Hz, 1H), 7.21 (d, *J* = 8.6 Hz, 1H), 4.78 (s, 1H), 4.44 – 4.29 (m, 2H), 2.26 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.3, 170.3, 135.2, 126.9, 125.7, 125.4, 123.1, 113.9, 113.0, 111.7, 82.2, 63.1, 24.9, 14.1; HRMS calcd for C₁₄H₁₄BrNO₄Na (M+Na)⁺ 361.9998, found 362.0003.

ethyl 2-hydroxy-2-(5-iodo-1H-indol-3-yl)-3-oxobutanoate (3ea)

White solid: m.p. 159-160 °C.¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.95 (s, 1H), 7.46 (d, J = 8.5 Hz, 1H), 7.42 (s, 1H), 7.13 (d, J = 8.6 Hz, 1H), 4.76 (s, 1H), 4.44 – 4.28 (m, 2H), 2.26 (s, 3H), 1.36 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.3, 170.3, 135.7, 131.2, 129.4, 127.7, 124.9, 113.4, 111.4, 84.2, 82.2, 63.1, 24.9, 14.2; HRMS calcd for C₁₄H₁₄INO₄Na (M+Na)⁺ 409.9860, found 409.9862.

ethyl 2-hydroxy-2-(5-methoxy-1H-indol-3-yl)-3-oxobutanoate (3fa)

White solid: m.p. 108-109 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.35 (d, J = 2.7 Hz, 1H), 7.21 (d, J = 8.8 Hz, 1H), 7.00 (d, J = 2.3 Hz, 1H), 6.86 (dd, J = 8.8, 2.4 Hz, 1H), 4.81 (s, 1H), 4.45 – 4.26 (m, 2H), 3.82 (s, 3H), 2.27 (s, 3H), 1.34 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.91, 170.32, 154.42, 131.59, 125.48, 124.81, 112.94, 112.24, 111.32, 101.72, 82.27, 77.39, 77.08, 76.76, 62.75, 55.80, 25.00, 14.10; HRMS calcd for C₁₅H₁₇NO₅Na (M+Na)⁺ 314.0999, found 314.1015.

ethyl 2-(5-cyano-1H-indol-3-yl)-2-hydroxy-3-oxobutanoate (3ga)

Pale solid: m.p. 100-101 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.30 – 8.40 (br, s, 1H), 8.05 (s, 1H), 7.63 (s, 1H), 7.43 (s, 2H), 4.82 (s, 1H), 4.46 – 4.29 (m, 2H), 2.27 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.7, 170.0, 138.2, 126.7, 126.4, 125.4, 125.1, 120.5, 112.9, 112.5, 103.6, 82.1, 63.3, 24.7, 14.1; HRMS calcd for C₁₅H₁₄N₂O₄Na (M+Na)⁺ 309.0846, found 309.0860.

methyl 3-(1-ethoxy-2-hydroxy-1,3-dioxobutan-2-yl)-1H-indole-6-carboxylate (3ha)

White solid: m.p. 135-136 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.91 (s, 1H), 8.12 (s, 1H), 7.80 (d, J = 8.5 Hz, 1H), 7.61 (d, J = 8.4 Hz, 2H), 4.85 (s, 1H), 4.46 – 4.26 (m, 2H), 3.95 (s, 3H), 2.25 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.4, 170.3, 168.1, 136.0, 128.8, 127.6, 124.3, 121.4, 120.1, 114.0, 112.3, 82.2, 63.1, 52.2, 24.9, 14.1; HRMS calcd for C₁₆H₁₇NO₆Na (M+Na)⁺ 342.0948, found 342.0951.

ethyl 2-(6-fluoro-1H-indol-3-yl)-2-hydroxy-3-oxobutanoate (3ia)

White solid: m.p. 139-140 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.49 (dd, J = 8.8, 5.3 Hz, 1H), 7.35 (d, J = 2.0 Hz, 1H), 7.00 (dd, J = 9.4, 2.2 Hz, 1H), 6.89 (td, J = 9.3, 2.3 Hz, 1H), 4.82 (s, 1H), 4.44 – 4.27 (m, 2H), 2.26 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.5, 170.2, 160.0 (d, J = 245.6 Hz), 136.5 (d, J = 12.3 Hz), 124.5 (d, J = 3.3 Hz), 121.6, 121.3 (d, J = 10.0 Hz), 112.0, 109.3 (d, J = 24.2 Hz), 97.7 (d, J = 26.0 Hz), 82.2, 62.9, 24.8, 14.0; HRMS calcd for C₁₄H₁₄FNO₄Na (M+Na)⁺ 302.0799, found 302.0810.

ethyl 2-(6-chloro-1H-indol-3-yl)-2-hydroxy-3-oxobutanoate (3ja)

White solid: m.p. 132-133 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.50 (d, *J* = 8.6 Hz, 1H), 7.43 (d, *J* = 2.5 Hz, 1H), 7.33 (d, *J* = 1.5 Hz, 1H), 7.09 (dd, *J* = 8.6, 1.7 Hz, 1H), 4.80 (s, 1H), 4.34 – 4.27 (m, 2H), 2.25 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.4, 170.1, 136.9, 128.6, 124.8, 123.7, 121.2, 121.2, 112.1, 111.4, 77.4, 77.0, 76.7, 24.8, 14.1; HRMS calcd for C₁₄H₁₄ClNO₄Na (M+Na)⁺ 318.0504, found 318.0514.

ethyl 2-(6-bromo-1H-indol-3-yl)-2-hydroxy-3-oxobutanoate (3ka)

White solid: m.p. 153-154 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.52 (s, 1H), 7.46 (d, *J* = 8.7 Hz, 2H), 7.23 (d, *J* = 8.6 Hz, 1H), 4.77 (s, 1H), 4.42 – 4.29 (m, 2H), 2.25 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.5, 170.3, 137.4, 124.8, 124.1, 123.9, 121.8, 116.4, 114.5, 112.3, 82.2, 63.1, 24.9, 14.2; HRMS calcd for C₁₄H₁₄BrNO₄Na (M+Na)⁺ 361.9998, found 361.9993.

methyl 3-(1-ethoxy-2-hydroxy-1,3-dioxobutan-2-yl)-1H-indole-4-carboxylate (3la)

White solid: m.p. 113-114 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.07 (s, 1H), 7.71 (d, *J* = 7.5 Hz, 1H), 7.27 (d, *J* = 7.7 Hz, 2H), 7.07 (t, *J* = 7.8 Hz, 1H), 6.70 (s, 1H), 6.37 (s, 1H), 4.38 – 4.22 (m, 2H), 3.89 (s, 3H), 2.46 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 206.3, 171.1, 170.6, 137.9, 127.6, 124.1, 122.3, 122.3, 121.2, 117.4, 113.4, 83.62, 77.4, 77.1, 76.8, 62.4, 52.7, 26.2, 14.0; HRMS calcd for C₁₆H₁₇NO₄Na (M+Na)⁺ 342.0948, found 342.0954.

ethyl 2-hydroxy-2-(4-methyl-1H-indol-3-yl)-3-oxobutanoate (3ma)

White solid: m.p. 135-136 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.15 – 7.01 (m, 2H), 6.90 (d, J = 5.9 Hz, 1H), 6.82 (d, J = 2.2 Hz, 1H), 4.59 (s, 1H), 4.42 – 4.25 (m, 2H), 2.47 (s, 3H), 2.34 (s, 3H), 1.32 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 207.1, 171.1, 137.3, 130.5, 124.9, 124.4, 122.9, 122.7, 113.0, 109.4, 82.8, 62.9, 26.8, 21.5, 14.1; HRMS calcd for C₁₅H₁₇NO₄Na (M+Na)⁺ 298.1050, found 298.1052.

ethyl 2-(4-bromo-1H-indol-3-yl)-2-hydroxy-3-oxobutanoate (3na)

Pink solid: m.p. 132-133 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.07 (s, 1H), 7.31 (d, *J* = 7.5 Hz, 1H), 7.11 (d, *J* = 8.1 Hz, 1H), 6.96 (t, *J* = 7.8 Hz, 1H), 6.65 (s, 1H), 4.69 (s, 1H), 4.45 – 4.22 (m, 2H), 2.43 (s, 3H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 206.9, 171.0, 138.2, 126.8, 125.3, 124.1, 123.5, 112.7, 112.2, 111.4, 82.2, 63.1, 27.4, 14.1; HRMS calcd for C₁₄H₁₄BrNO₄Na (M+Na)⁺ 361.9998, found 362.0005.

ethyl 2-hydroxy-2-(7-methyl-1H-indol-3-yl)-3-oxobutanoate (3oa)

White solid: m.p. 109-110 °C.¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.44 – 7.38 (m, 2H), 7.11 – 6.96 (m, 2H), 4.84 (s, 1H), 4.46 – 4.26 (m, 2H), 2.47 (s, 3H), 2.27 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.9, 170.4, 136.1, 124.6, 124.0, 123.1, 120.6, 120.6, 117.9, 112.3, 82.2, 62.7, 25.0, 16.6, 14.1; HRMS calcd for C₁₅H₁₇NO₄Na (M+Na)⁺ 298.1050, found 298.1054.

ethyl 2-hydroxy-2-(1-methyl-1H-indol-3-yl)-3-oxobutanoate (3pa)

Colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.0 Hz, 1H), 7.41 (s, 1H), 7.35 (d, J = 8.2 Hz, 1H), 7.28 (t, J = 7.5 Hz, 1H), 7.16 (t, J = 7.4 Hz, 1H), 4.86 (s, 1H), 4.38 (dddd, J = 22.7, 10.7, 7.1, 3.6 Hz, 2H), 3.81 (s, 3H), 2.30 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.4, 170.3,

168.1, 136.0, 128.8, 127.6, 124.3, 121.4, 120.1, 114.0, 112.3, 82.2, 63.1, 52.2, 24.9, 14.1; HRMS calcd for C₁₅H₁₇NO₄Na (M+Na)⁺ 298.1050, found 298.1044.

ethyl 2-(1-benzyl-1H-indol-3-yl)-2-hydroxy-3-oxobutanoate (3qa)

Pale solid: m.p. 64-65 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 8.0 Hz, 1H), 7.49 (s, 1H), 7.38 – 7.29 (m, 4H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.15 (t, *J* = 7.8 Hz, 3H), 5.35 (s, 2H), 4.82 (s, 1H), 4.45 – 4.28 (m, 2H), 2.29 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.6, 170.4, 136.9, 136.9, 128.8, 128.2, 127.8, 126.8, 125.9, 122.3, 120.6, 120.2, 110.8, 110.0, 82.2, 62.7, 50.3, 24.9, 14.0; HRMS calcd for C₂₁H₂₁NO₄Na (M+Na)⁺ 374.1363, found 374.1365.

ethyl 2-hydroxy-3-oxo-2-(2-phenyl-1H-indol-3-yl)butanoate (3ra)

Yellow solid: m.p. 107-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.55 (m, 3H), 7.54 – 7.46 (m, 1H), 7.38 – 7.26 (m, 3H), 7.05 – 6.96 (m, 1H), 6.84 (q, J = 7.1 Hz, 1H), 6.23 (d, J = 7.1 Hz, 1H), 4.99 (s, 0.5H), 4.81 (s, 0.5H), 4.13 – 3.91 (m, 2H), 2.21 (s, 1.5H), 2.19 (s, 1.5H), 1.07 (t, J = 7.1 Hz, 1.5H), 0.94 (t, J = 7.1 Hz, 1.5H); ¹³C NMR (101 MHz, CDCl₃) δ 203.1, 199.1, 198.6, 198.5,168.0, 166.0, 160.2, 159.9, 137.4, 137.4, 137.0, 136.9, 136.8, 128.6, 128.5, 127.8, 127.7, 125.1, 125.0, 124.9, 124.9, 119.0, 119.0, 118.7, 111.6, 111.3, 70.2, 70.0, 65.3, 62.6, 61.6, 61.4, 32.7, 30.0, 13.4, 13.1; HRMS calcd for C₂₀H₁₉NO₄Na (M+Na)⁺ 360.1206, found 360.1213.

3. Characterization Data of Compounds 4ab-4ah:

methyl 2-hydroxy-2-(1H-indol-3-yl)-3-oxobutanoate (4ab)

White solid: m.p. 112-113 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.39 – 7.29 (m, 2H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.14 (t, *J* = 7.5 Hz, 1H), 4.88 (s, 1H), 3.88 (s, 3H), 2.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.8, 170.8, 136.5, 124.95, 124.3, 122.6, 120.5, 120.0, 111.6, 111.6, 82.3, 53.4, 25.0; HRMS calcd for C₁₃H₁₃NO₄Na (M+Na)⁺ 270.0737, found 270.0745.

tert-butyl 2-hydroxy-2-(1H-indol-3-yl)-3-oxobutanoate (4ac)

White solid: m.p. 119-120 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.60 (d, *J* = 7.9 Hz, 1H), 7.37 (s, 1H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.12 (t, *J* = 7.4 Hz, 1H), 4.75 (s, 1H), 2.24 (s, 3H), 1.54 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 205.0, 169.5, 136.5, 125.2, 124.1, 122.4, 120.5, 120.2, 112.1, 111.5, 84.2, 82.4, 27.9, 25.1; HRMS calcd for C₁₆H₁₉NO₄Na (M+Na)⁺ 312.1206, found 312.1219.

benzyl 2-hydroxy-2-(1H-indol-3-yl)-3-oxobutanoate (4ad)

White solid: m.p. 93-94 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.36 (s, 5H), 7.33 – 7.29 (m, 2H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.09 (t, *J* = 7.5 Hz, 1H), 5.33 (q, *J* = 12.2 Hz, 2H), 4.87 (s, 1H), 2.22 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.7, 170.1, 136.5, 134.9, 128.7, 128.7, 128.5, 125.1, 124.4, 122.7, 120.5, 120.2, 111.6, 111.6, 82.4, 68.2, 25.1; HRMS calcd for C₁₉H₁₇NO₄Na (M+Na)⁺ 346.1050, found 346.1052.

ethyl 2-hydroxy-2-(1H-indol-3-yl)-3-oxopentanoate (4ae)

White solid: m.p. 96-97 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.41 (s, 1H), 7.34 (d, *J* = 8.1 Hz, 1H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.12 (t, *J* = 7.5 Hz, 1H), 4.87 (s, 1H), 4.45 – 4.24 (m, 2H), 2.80 – 2.67 (m, 1H), 2.58 – 2.46 (m, 1H), 1.33 (t, *J* = 7.1 Hz, 3H), 1.02 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 207. 8, 170.1, 136.2, 124.8, 124.2, 122.1, 119.9, 119.7, 111.4, 111.4, 81.7, 62.4, 30.3, 13.7, 7.7; HRMS calcd for C₁₅H₁₇NO₄Na (M+Na)⁺ 298.1050, found 298.1064.

ethyl 2-hydroxy-2-(1H-indol-3-yl)-3-oxo-3-phenylpropanoate (4af)

White solid: m.p. 124-125 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 8.08 (d, *J* = 8.0 Hz, 2H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.50 (s, 1H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.32 (t, *J* = 7.1 Hz, 3H), 7.17 (t, *J* = 7.6 Hz, 1H), 7.08 (t, *J* = 7.5 Hz, 1H), 5.09 (s, 1H), 4.40 – 4.19 (m, 2H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 195.2, 171.1, 136.1, 133.3, 133.2, 130.0, 127.9, 125.3, 123.9, 122.2, 120.4, 120.0, 113.0, 111.1, 81.0, 62.6, 13.6; HRMS calcd for C₁₉H₁₇NO₄Na (M+Na)⁺ 346.1050, found 346.1056.

3-hydroxy-3-(1H-indol-3-yl)pentane-2,4-dione (4ah)

White solid: m.p. 107-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 1H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.38 (d, *J* = 8.2 Hz, 1H), 7.33 (d, *J* = 2.7 Hz, 1H), 7.27 – 7.21 (m, 1H), 7.18 – 7.11 (m, 1H), 5.36 (s, 1H), 2.36 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 207.3, 136.6, 124.8, 123.7, 122.8, 120.7, 119.8, 112.5, 111.6, 87.3, 26.2; HRMS calcd for C₁₃H₁₃NO₃Na (M+Na)⁺ 254.0788, found 254.0794.

2-hydroxy-2-(1H-indol-3-yl)-1-phenylbutane-1,3-dione (4ai)

White solid: m.p. 154-155 °C.¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 8.12 (d, *J* = 7.9 Hz, 2H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.50 (t, *J* = 7.3 Hz, 1H), 7.41 – 7.29 (m, 3H), 7.26 – 718 (m, 2H), 7.12 (t, *J* = 7.5 Hz, 1H), 5.57 (s, 1H), 2.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 207.3, 198.0, 136.4, 134.2, 133.5, 130.9, 128.1, 124.9, 123.7, 122.9, 120.7, 120.1, 113.8, 111.5, 85.2, 26.6; HRMS calcd for C₁₈H₁₅NO₃Na (M+Na)⁺ 316.0944, found 316.0947.

4. Characterization Data of Compounds 6aa and 6ba:

ethyl 2-hydroxy-3-oxo-2-(1H-pyrrol-2-yl)butanoate (6aa)

Colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.98 (s, 1H), 6.83 (s, 1H), 6.39 (s, 1H), 6.24 (s, 1H), 4.81 (s, 1H), 4.36 (q, *J* = 6.8 Hz, 2H), 2.34 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.8, 169.4, 125.6, 118.5, 109.2, 108.1, 81.4, 63.2, 24.4, 14.0; HRMS calcd for C₁₀H₁₃NO₄Na (M+Na)⁺ 234.0737, found 234.0730.

ethyl 2-hydroxy-2-(1-methyl-1H-pyrrol-2-yl)-3-oxobutanoate (6ba)

Colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 6.65 (s, 1H), 6.15 (s, 1H), 6.10 (t, *J* = 3.0 Hz, 1H), 4.50 (s, 1H), 4.39 (qd, *J* = 7.0, 2.8 Hz, 2H), 3.53 (s, 3H), 2.35 (s, 3H), 1.39 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.1, 168.4, 125.8, 124.5, 109.8, 106.2, 81.2, 62.2, 34.3, 25.2, 13.2; HRMS calcd for C₁₁H₁₅NO₄Na (M+Na)⁺ 248.0893, found 228.0887.

5. ¹H and ¹³C NMR Spectra of Compounds 3aa-3oa

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 13 C NMR of **3aa** in CDCl₃ at 299 K (δ in ppm).

¹³C NMR of **3ca** in CDCl₃ at 299 K (δ in ppm).

 ^{13}C NMR of **3ga** in CDCl₃ at 299 K (δ in ppm).

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 f1 (ppm)

 ^{13}C NMR of **3ha** in CDCl₃ at 299 K (δ in ppm).

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 13 C NMR of **3ja** in CDCl₃ at 299 K (δ in ppm).

S20

 ^{13}C NMR of **3ka** in CDCl₃ at 299 K (δ in ppm).

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 13 C NMR of **3la** in CDCl₃ at 299 K (δ in ppm).

²⁴⁰ ²³⁰ ²²⁰ ²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ¹³C NMR of **3na** in CDCl₃ at 299 K (δ in ppm).

 ^{13}C NMR of **3pa** in CDCl₃ at 299 K (δ in ppm).

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 13 C NMR of **3qa** in CDCl₃ at 299 K (δ in ppm).

170 160

220

210 200

190 180

100 90

80

70 60

50

40 30

10

20

0

150 140 130 120 110 f1 (ppm)

6. ¹H and ¹³C NMR Spectra of Compounds 4ab-4ai

¹³C NMR of **4ab** in CDCl₃ at 299 K (δ in ppm).

 ^{13}C NMR of 4ac in CDCl3 at 299 K (δ in ppm).

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 13 C NMR of **4ad** in CDCl₃ at 299 K (δ in ppm).

110 100 f1 (ppm) 210 200 150 140 130 120 ¹³C NMR of **4ae** in CDCl₃ at 299 K (δ in ppm).

 122 120 1.19

¹³C NMR of **4af** in CDCl₃ at 299 K (δ in ppm).

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 $_{f1 (ppm)}^{13}$ C NMR of **4ag** in CDCl₃ at 299 K (δ in ppm).

-2.35

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 $_{f1 (ppm)}^{11}$ H NMR of **4ah** in CDCl₃ at 297 K (δ in ppm).

7. ¹H and ¹³C NMR Spectra of Compound 6aa-6ba

8. X-ray crystal structure of 3aa

ORTEP plot of **3aa** shown with ellipsoids at the 30% level.

