Supporting Information

PEGylated Gold Nanoprisms for Photothermal Therapy at Low Laser Power Density

Xingqun Ma,^a Yuan Cheng,^a Yong Huang,^a Ying Tian,^b Shouju Wang*^b and Yingxia Chen*^a

a. PLA Cancer Center of Nanjing Bayi Hospital, Nanjing 210002, China

b. Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China

*Corresponding authors: Yingxia Chen, M.D. PLA Cancer Center of Nanjing Bayi Hospital, Nanjing 210002, China E-mail: <u>chenyingxiacsco@163.com</u>

Shouju Wang, M.D. Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China E-mail: <u>shouju.wang@gmail.com</u>

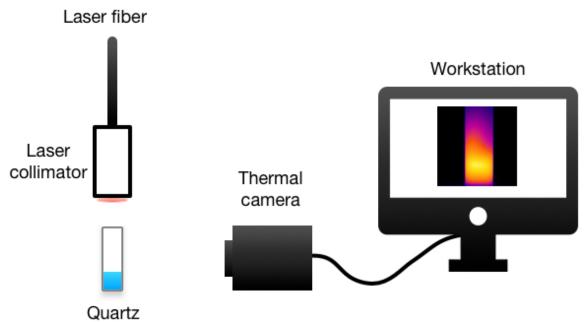


Figure S1. A schematic representation of the laser setup and temperature measurement. The volume of GNPs solutions is 1 mL. The wavelength and power density of the laser is 650 ± 10 nm and 2 W cm⁻².

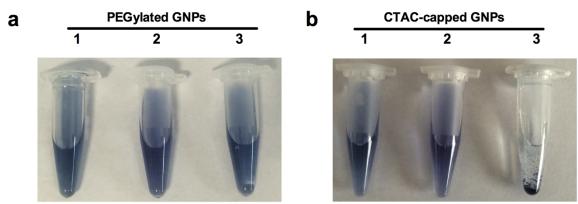


Figure S2. (a) Digital photos of PEGylated GNPs dispersed in (1) water, (2) PBS, (3) DMEM without phenol red after 24 h. (b) Digital photos of CTAC-capped GNPs dispersed in (1) water, (2) PBS, (3) DMEM without phenol red after 24 h.

Gold nanostructures	Photothermal conversion efficacy	Reference
Gold nanorods	22%	[15]
Gold nanoshells	13%	[24]
Gold nanocages	63%	[25]
Gold hexapods	29.6%	[25]
Gold bellflowers	74%	[3]
Gold nanoprisms	70%	This study

Table S1. Photothermal conversion efficacy of GNPs comparing with other types of gold nanostructures.