Novel phosphorescent iridium(III) complexes containing 2-thienyl

quinazoline ligand: synthesis, photophysical properities and theoretical

calculation

Qunbo Mei,*,^a Jiena Weng,^{a,c} Zhijie Xu,^a Bihai Tong,^b Qingfang Hua,^a Yujie Shi,^a Juan Song^a and Wei Huang^{*,a,c}

^aKey Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials(IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; E-mail: iamqbmei@njupt.edu.cn.

^bCollege of Metallurgy and Resources, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China; ^cKey Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China; E-mail: iamwhuang@njupt.edu.cn

Contents:

1. Supplementary Figures and Tables

2. Characterizations: ¹H-NMR, ¹³C-NMR, and MADIL-TOF-MS spectra

1. Supplementary Figures and Tables

Figure. S1 Photoluminescence spectra of complexes Ir1-Ir4 in 2 wt% PMMA films at room temperature

Figure. S2 Cyclic voltammogram of complexes Ir1-Ir4 in deoxygenated DCM solutions at room temperature.

Fig. S3 The simulated absorption spectra of complexes Ir1-Ir4 in DCM.

Figure. S4 The relationship between the theoretical and experimental values of the maximum phosphorescence emissions.

	Ir1	Ir2	Ir3	Ir4
Empirical formula	$C_{30}H_{18}IrN_5O_2S_2$	$C_{40}H_{36}IrN_7O_2S_2$	$C_{46}H_{34}IrN_5O_4S_2$	$C_{54}H_{36}IrN_7O_2S_2$
Formula weight	736.81	903.08	977.10	1071.22
Temperature (K)	296	296	296	296
Mo $K\alpha$ radiation (Å)	$\lambda = 0.71073$	$\lambda = 0.71073$	$\lambda = 0.71073$	$\lambda = 0.71073$
Crystal system, space group	Monoclinic, P2 ₁ /n	Triclinic, P1	Monoclinic, C2/c	Monoclinic, P2 ₁ /n
Unit cell dimensions	a = 11.3735 (11) Å	a = 9.324 (5) Å	a = 27.554 (13) Å	a = 14.908 (3) Å
	$\alpha = 90.000$ °	$\alpha = 106.650 (8)^{\circ}$	$\alpha = 90.000^{\circ}$	$\alpha = 90.000$ °
	b = 12.2222 (11) Å	b = 12.900 (7) Å	b = 17.381 (8) Å	b = 14.425 (3) Å
	$\beta = 93.385(1)^{\circ}$	$\beta = 94.335 (8)^{\circ}$	$\beta = 122.764(7)^{\circ}$	$\beta = 94.332 (4)^{\circ}$
	c = 121.987 (2) Å	c = 18.496 (10) Å	c = 23.473 (11) Å	c = 23.345 (5) Å
	$\gamma = 90.000$ °	$\gamma = 91.856 (7)^{\circ}$	γ=90.000 °	$\gamma = 90.000$ °
Volume (Å ³)	3051.1 (5)	2122 (2)	9453 (8)	4684 Å ³
Z, Calculated density	4	2	8	4
$D_{\rm x}$ (Mg/m ³)	1.604	1.413	1.373	1.421
μ (mm ⁻¹)	4.55	3.29	2.96	2.80
F(000)	1432	900	3888	2136
Crystal size (mm)	$0.26 \times 0.24 \times 0.22$	$0.28\times0.25\times0.22$	$0.27\times0.25\times0.22$	$0.26 \times 0.24 \times 0.22$
Theta range for data collection	2.5° - 27.2°	1.2° - 25.0°	1.5° - 25.0°	1.6° - 25.0°
Limiting indices	$h = -13 \rightarrow 11$	$h = -10 \rightarrow 11$	$h = -27 \rightarrow 32$	$h = -17 \rightarrow 12$
	$k = -14 \rightarrow 14$	$k = -15 \rightarrow 15$	$k = -20 \rightarrow 20$	$k = -17 \rightarrow 17$
	$l = -26 \rightarrow 20$	$l = -21 \rightarrow 12$	$l = -27 \rightarrow 22$	$l = -27 \rightarrow 27$
No. of mearured, independent				
and observed $[I > 2\sigma(I)]$	16314, 5383, 4171	11715, 7432, 6271	25823, 8342, 6649	27285, 8827, 6894
reflections				
R _{int}	0.031	0.026	0.033	0.038
$(\sin\theta/\lambda)_{\rm max}$ (Å-1)	0.595	0.595	0.595	0.595
Refinement method	Refinement on F^2	Refinement on F^2	Refinement on F^2	Refinement on F ²
Least-squares matrix	full	full	full	full
Data / restraints / parameters	5383 / 0 / 361	7432 / 0 / 469	8342 / 72 / 515	8827 / 48 / 595
Goodness-of-fit on F ²	1.02	0.97	1.05	1.02
$R[F^2 > 2\sigma(F^2)]$	0.026	0.031	0.027	0.029
$w \mathbf{R}(F^2)$	0.060	0.065	0.066	0.072
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e A ⁻³)	0.81, -0.72	0.84, -0.95	0.61, -0.51	1.03, -0.53

 Table S1
 XRD experimental details

Ir1	Bond length (Å)	Ir2	Bond length (Å)	Ir3	Bond length (Å)	Ir4	Bond length (Å)
Ir-C30	2.001(4)	Ir-C15	1.980(4)	Ir-C18	1.983(3)	Ir-C22	1.984(4)
Ir-C21	1.986(4)	Ir-C32	1.966(3)	Ir-C38	1.975(4)	Ir-C46	1.963(4)
Ir-N1	2.049(3)	Ir-N1	2.100(4)	Ir-N3	2.101(3)	Ir-N4	2.083(3)
Ir-N3	2.044(3)	Ir-N4	2.083(4)	Ir-N1	2.077(3)	Ir-N1	2.087(3)
Ir-N5	2.129(3)	Ir-N7	2.150(4)	Ir-N5	2.157(5)	Ir-N7	2.164(3)
Ir-O1	2.148(2)	Ir-O1	2.158(3)	Ir-O3	2.149(4)	Ir-O1	2.138(3)

Table S2Selected bond lengths of complexes Ir1-Ir4

Table S3Selected bond angles of complexes Ir1-Ir4

T1	Bond angle	1-2	Bond angle	12	Bond angle	T-: 4	Bond angle
Iri	(°)	112	(°)		(°)	1r4	(°)
C30-Ir-C21	86.9(2)	C15-Ir-C32	92.6(2)	C18-Ir-C38	93.0(2)	C22-Ir-C46	95.3(2)
C30-Ir-N1	80.6(2)	C15-Ir-N1	79.3(1)	C18-Ir-N3	79.5(1)	C22-Ir-N4	79.7(1)
C30-Ir-N3	95.1(1)	C15-Ir-N4	92.7(1)	C18-Ir-N1	93.5(1)	C22-Ir-N1	94.4(1)
C30-Ir-N5	173.6(1)	C15-Ir-N7	171.5(1)	C18-Ir-N5	169.7(2)	C22-Ir-N7	165.8(1)
C30-Ir-O1	98.2(1)	C15-Ir-O1	95.3(1)	C18-Ir-O3	93.2(2)	C22-Ir-O1	90.2(1)
C21-Ir-N1	96.1(1)	C32-Ir-N1	99.0(1)	C38-Ir-N3	94.6(1)	C46-Ir-N4	95.7(1)
C21-Ir-N3	80.0(1)	C32-Ir-N4	79.6(1)	C38-Ir-N1	79.6(1)	C46-Ir-N1	79.7(1)
C21-Ir-N5	98.5(1)	C32-Ir-N7	95.7(1)	C38-Ir-N5	96.5(2)	C46-Ir-N7	98.3(1)
C21-Ir-O1	172.3(1)	C32-Ir-O1	172.0(1)	C38-Ir-O3	173.4(2)	C46-Ir-O1	173.8(1)
N1-Ir-N3	174.4(1)	N1-Ir-N4	171.8(1)	N3-Ir-N1	170.8(1)	N4-Ir-N1	172.2(1)
N1-Ir-N5	95.4(1)	N1-Ir-N7	101.2(1)	N3-Ir-N5	103.5(1)	N4-Ir-N7	103.0(1)
N1-Ir-O1	90.4(1)	N1-Ir-O1	82.9(1)	N3-Ir-O3	84.5(1)	N4-Ir-O1	82.5(1)
N3-Ir-N5	89.2(1)	N4-Ir-N7	87.0(1)	N1-Ir-N5	84.5(1)	N1-Ir-N7	84.0(1)
N3-Ir-O1	93.8(1)	N4-Ir-O1	99.7(1)	N1-Ir-O3	102.1(1)	N1-Ir-O1	102.7(1)
N5-Ir-O1	76.8(1)	N7-Ir-O1	76.3(1)	N5-Ir-O1	77.4(2)	N7-Ir-O1	76.4(1)

Complex Orbital		Ĭr	C^N (1)				C^N (2)				
Complex Orbital	11	total	QZ	Th	substituent	total	QZ	Th	substituent	· IN U	
Ir1	LUMO	1.7%	5.5%	3.9%	1.6%		91.8%	66.4%	17.0%		0.9%
	НОМО	33.0%	35.8%	22.7%	13.1%		27.7%	25.4%	10.4%		3.6%
Ir2	LUMO+1	2.2%	81.1%	59.6%	13.9%	7.6%	0.7%	0.5%	0.0%	0.2%	16.0%
	LUMO	3.0%	0.4%	0.1%	0.2%	0.0%	95.7%	71.4%	15.8%	8.5%	0.9%
	НОМО	34.7%	32.6%	7.7%	24.8%	0.1%	29.6%	7.1%	22.4%	0.1%	3.1%
Ir3	LUMO+1	3.3%	89.6%	69.5%	16.3%	3.8%	4.1%	7.9%	20.9%	0.0%	3.0%
	LUMO	3.5%	4.7%	3.4%	1.1%	0.2%	90.9%	71.2%	19.1%	0.6%	0.9%
	НОМО	34.3%	33.9%	9.0%	24.8%	0.0%	28.9%	3.4%	0.7%	0.0%	3.0%
Ir4	LUMO+1	3.6%	0.8%	0.5	0.3	0.0	94.3%	69.5%	13.8	11.0	1.4%
	LUMO	2.5%	94.5%	72.3	10.7	11.5	0.5%	0.2	0.2	0.0	2.5%
	НОМО	34.5%	30.4%	7.8	22.6	0.0	32.0%	7.8	23.9	0.3	3.1%

 Table S4
 Orbital composition analysis for Ir1–Ir4 at their lowest singlet state (S0) geometries

 Table S5
 Orbital composition analysis for Ir1–Ir4 at their first excited triplet state (T1) geometries.

Complex Orbital		Ĭr	C^N (1)				C^N (2)				
complex oronar	11	total	QZ	Th	substituent	total	QZ	Th	substituent	- NO	
Ir1	LUMO+4	5.7	71.4	43.7	27.6		21.7	13.8	7.8		1.2
	LUMO	1.5	96.8	88.4	8.3		1.2	0.7	0.5		0.5
	НОМО	28.0	48.3	15.8	32.5		20.4	5.4	15.0		3.4
	HOMO-1	2.5	42.9	18.6	24.3		53.4	19.2	34.3		1.1
Ir2	LUMO+4	1.9	61.4	44.1	16.1	1.2	34.1	25.6	7.8	0.6	2.6
	LUMO	4.2	91.6	62.4	23.8	5.4	0.5	0.3	0.2	0.0	3.7
	НОМО	28.8	49.1	18.7	30.4	0.1	20.1	5.1	14.9	0.1	1.9
	HOMO-1	20.6	33.5	19.3	10.3	3.9	43.2	20.4	20.5	2.3	2.8
Ir3	LUMO	4.90	5.08	3.34	1.60	0.15	88.84	55.77	30.46	2.62	1.18
	НОМО	29.34	25.65	7.09	18.54	0.02	42.24	15.30	26.92	0.02	2.77
	HOMO-1	17.70	40.74	17.71	22.58	0.45	38.35	21.05	16.61	0.69	3.21
Ir4	LUMO	4.4	0.8	0.4	0.3	0.0	93.9	71.4	14.7	7.9	0.9
	НОМО	30.4	28.6	7.5	20.9	0.1	38.1	12.7	25.4	0.1	2.8
	HOMO-1	12.1	19.0	8.3	6.1	4.6	67.5	18.7	4.4	44.3	1.4
	НОМО-3	2.3	57.5	6.5	19.7	31.4	39.1	14.4	16.8	10.9	1.0

2. Characterizations: ¹H-NMR, ¹³C-NMR, and MADIL-TOF-MS spectra

Figure S7. ¹H NMR of L2 in DMSO

7.83 7.73 7.77 7.64 7.64 7.64 7.54 7.54 7.55

Figure S12. ¹³C NMR of L4 in CDCl₃

Figure S13. ¹H NMR of Ir1 in DMSO

Figure S16. ¹³C NMR of Ir2 in CDCl₃

$\begin{array}{c} 8.35 \\ 8.35 \\ 8.32 \\ 8.32 \\ 8.32 \\ 8.32 \\ 8.32 \\ 7.55 \\ 7.55 \\ 7.73 \\ 7.72 \\ 7.72 \\ 6.13 \\ 6.14 \\ 6.13 \end{array}$

Figure S18. ¹³C NMR of Ir3 in CDCl₃

Figure S19. ¹H NMR of Ir4 in DMSO

Figure S20. ¹³C NMR of Ir4 in CDCl₃

Figure S21. MALDI-TOF spectrum of Ir1

Figure S23. MALDI-TOF spectrum of Ir3

