Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Functionalized Fe₃O₄ nanoparticles: influence of ligand addition sequence and pH during their continuous hydrothermal synthesis

G. Thomas, F. Demoisson, O. Heintz, N. Geoffroy, L. Saviot and N. Millot

Laboratoire Interdisciplinaire Carnot de Bourgogne UMR 6303 CNRS-Université de Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47870 F- 21078 DIJON Cedex, FRANCE, E-mail: <u>mmillot@u-bourgogne.fr</u>

Contents

Table S1: XPS Fe2p peak positions for Fe₃O₄-LDOPA and Fe₃O₄-DHCA NPs from $run\{1/a/b\}$, $run\{2/a/b\}$ and $run\{3/a/b\}$

Fig. S1: Raman spectra of A) Fe_3O_4 -LDOPA from $run\{1/LDOPA/b\}$, $run\{2/LDOPA/b\}$ and $run\{3/LDOPA/b\}$ and B) Fe_3O_4 -DHCA synthesized in $run\{1/DHCA/b\}$, $run\{2/DHCA/b\}$ and $run\{3/DHCA/b\}$ from 200 to 1000 cm⁻¹ (τ : torsion)

Fig. S2: XPS spectra of Fe2p collected on A) Fe₃O₄-DHCA, B) Fe₃O₄-LDOPA NPs from run{1/a/b}, run{2/a/b} and run{3/a/b}

Fig. S3: Raman spectra of A) Fe_3O_4 -LDOPA from $run\{1/LDOPA/b\}$, $run\{2/LDOPA/b\}$ and $run\{3/LDOPA/b\}$ and B) Fe_3O_4 -DHCA synthesized in $run\{1/DHCA/b\}$, $run\{2/DHCA/b\}$ and $run\{3/DHCA/b\}$ from 1000 to 2000 cm⁻¹ (v: stretching)

Fig. S4: XPS spectra of dessumated A) C(1s) Fe₃O₄-DHCA, B) C(1s) Fe₃O₄-LDOPA C) N(1s) contributions measured for Fe₃O₄-LDOPA and D) Fe₃O₄ NPs from run{1/a/b}, run{2/a/b} and run{3/a/b}

Fig. S5: TEM diameters distributions of A) naked Fe₃O₄, B) Fe₃O₄-DHCA NPs and C) Fe₃O₄-LDOPA NPs determined from counting100 crystallites from run{1/DHCA/b}, run{2/DHCA/b} and run{3/DHCA/b}

Fig. S6: TEM images of Fe₃O₄-LDOPA from run {2/LDOPA/100%} A-C) and D) selected area electron diffraction of B)

Fig. S7: Suspension of A) naked Fe₃O₄, B) run{1/LDOPA/100%} and C) run{1/DHCA/100%} NPs few minutes after homogenization with an ultrasounds-tip and of D) naked Fe₃O₄, E) run{1/LDOPA/100%} and F) run{1/DHCA/100%} NPs after 6 hours in deionized water

	a: DHCA				a: LDOPA			
	Fe2p _{1/2} (eV)	Satellite Fe2p _{3/2} (eV)	Fe2p _{3/2} (eV)	Δ (Satellite- Fe2p _{3/2}) (eV)	Fe2p _{1/2} (eV)	Satellite Fe2p _{3/2} (eV)	Fe2p _{3/2} (eV)	Δ (Satellite- Fe2p _{3/2}) (eV)
Ref: Fe ₃ O ₄	723.9	718.6	710.4	8.2	723.9	718.6	710.4	8.2
Run{1/a/100%}	724.0	718.7	710.4	8.3	724.4	718.9	710.8	8.1
Run{1/a/50%}	724.2	718.7	710.5	8.2	724.3	718.8	710.9	7.9
Run{1/a/33%}	724.1	718.8	710.6	8.2	724.4	718.8	710.6	8.2
Run{2/a/100%}	724.1	n.d	710.5	n.d	724.2	718.6	710.6	8.0
Run{2/a/50%}	724.1	718.7	710.6	8.1	724.1	718.7	710.6	8.1
Run{2/a/33%}	724.1	718.8	710.5	8.3	724.1	718.8	710.7	8.1
Run{3/a/100%}	723.9	718.7	710.5	8.2	724.3	718.7	710.5	8.2
Run{3/a/50%}	724.0	718.6	710.5	8.1	724.2	718.8	710.7	8.1
Run{3/a/33%}	724.0	718.5	710.5	8.0	724.4	718.8	710.7	8.1

 Kun{3/a/35%}
 /24.0
 /18.5
 /10.5
 8.0
 /24.4
 /18.8
 /10.7
 8.1

 Table S1: XPS Fe2p peak positions for Fe₃O₄-LDOPA and Fe₃O₄-DHCA NPs from run{1/a/b}, run{2/a/b} and run{3/a/b}

Fig. S1: Raman spectra of A) Fe_3O_4 -LDOPA from run {1/LDOPA/b}, run {2/LDOPA/b} and run {3/LDOPA/b} and B) Fe_3O_4 -DHCA synthesized in run {1/DHCA/b}, run {2/DHCA/b} and run {3/DHCA/b} from 200 to 1000 cm⁻¹ (τ : torsion)

Fig. S2: XPS spectra of Fe2p collected on A) Fe₃O₄-DHCA, B) Fe₃O₄-LDOPA NPs from run $\{1/a/b\}$, run $\{2/a/b\}$ and run $\{3/a/b\}$

Fig. S3: Raman spectra of A) Fe_3O_4 -LDOPA from $run\{1/LDOPA/b\}$, $run\{2/LDOPA/b\}$ and $run\{3/LDOPA/b\}$ and B) Fe_3O_4 -DHCA synthesized in $run\{1/DHCA/b\}$, $run\{2/DHCA/b\}$ and $run\{3/DHCA/b\}$ from 1000 to 2000 cm⁻¹ (v: stretching)

 $\label{eq:Fig.S4:XPS spectra of dessumated A) C(1s) Fe_3O_4-DHCA, B) C(1s) Fe_3O_4-LDOPA C) N(1s) contributions measured for Fe_3O_4-LDOPA and D) Fe_3O_4 NPs from run {1/a/b}, run {2/a/b} and run {3/a/b}$

Fig. S5: TEM diameters distributions of A) naked Fe₃O₄, B) Fe₃O₄-DHCA NPs and C) Fe₃O₄-LDOPA NPs determined from counting100 crystallites from run{1/DHCA/b}, run{2/DHCA/b} and run{3/DHCA/b}

Fig. S6: TEM images of Fe₃O₄-LDOPA from run {2/LDOPA/100%} A-C) and D) selected area electron diffraction of B)

Fig. S7: Suspension of A) naked Fe₃O₄, B) run{1/LDOPA/100%} and C) run{1/DHCA/100%} NPs few minutes after homogenization with an ultrasounds-tip and of D) naked Fe₃O₄, E) run{1/LDOPA/100%} and F) run{1/DHCA/100%} NPs after 6 hours in deionized water