Electronic Supplementary Information

Electrodeposition of ultrathin nickel-cobalt double hydroxide nanosheets on

nickel foam as high-performance supercapacitor electrodes

Junheng Xing^a, Shaoyan Wu^{a, b} and K. Y. Simon Ng^{a*}

^a Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI 48202, USA

^b Department of Bioengineering, Zhixing College of Hubei University, Wuhan, Hubei 430011, China

Figure S1 SEM images of electrodeposited Ni-Co DH nanosheets in solution with different Ni/Co molar ratios: (a) 1/0, (b) 2/1 (c) 1/2, and (d) 0/1.

Figure S2 EDS mapping images of Ni-Co DH nanosheets obtained in solution of Ni/Co (1/1): (a) Ni, (b) Co. The green color is Ni and the red color indicates Co.

Figure S3 XRD patterns of Ni foam supported Ni-Co DHs obtained in solution of Ni/Co (1/1).

Figure S4 Comparison of CV curves of (a) pristine Ni foam and HCl pretreated Ni foam and (b) Ni-Co DHs deposited in the solution of Ni/Co (1/1) on Ni foam substrates without and with HCl pretreatment.

Figure S5 Galvanostatic charge/discharge curves at different current density of Ni foam supported Ni-Co DHs formed with different Ni/Co feeding molar ratios: (a) 1/0, (b) 9/1, (c) 4/1, (d) 3/2, (e) 1/1, (f) 1/2, (g) 1/3, and (h) 0/1.

Figure S6 SEM images of Ni-Co DHs after 2000 cycles of charge/discharge tests: (a) Ni/Co (1/0), (b) Ni/Co (4/1), (c) Ni/Co (1/1), (d) Ni/Co (0/1).

Figure S7 Cycle performance of Ni-Co DHs formed in solution of Ni/Co (1/1) without immersing pretreatment.

Figure S8 SEM images of Ni-Co DHs formed in solution of Ni/Co (1/1) without pre-immersing process (a) before and (b) after 2000 cycles of galvanostatic charge-discharge tests.

Table S1 Comparison of maximum (at low current density) and minimum (at high current density) C_s , cycle stability, and maximum (at low power density) and minimum (at high power density) energy density based on active materials of some reported supercapacitor electrodes of Ni-based oxides/hydroxides

Ref.	Electrode materials	$C_{\rm s}$ (F g ⁻¹)		Stability*	Energy density (Wh kg ⁻¹)	
		Maximum	Minimum	-	Maximum	Minimum
1	Ni(OH) ₂	3152	280	48%		
		(4 A g^{-1})	(16 A g^{-1})	(after 300 cycles)		
2	NiO	309	221	$\sim 91\%^{**}$		
		(1 A g^{-1})	(40 A g^{-1})			
3	Ni-Co LDHs***	2184	1494	88.5%	91.76	~ 62
		(1 A g^{-1})	(20 A g^{-1})		(0.826	(~ 11
					kW kg ⁻¹)	kW kg ⁻¹)
4	Ni-Co DH microspheres	2275.5	1007.8	~ 95%		
		(1 A g^{-1})	(25 A g^{-1})			
5	Ni-Co LDHs/ZnO nanoflake	1624	1311	94 %	68.23	48.32
		(10 A g^{-1})	(50 A g^{-1})		(2.75	(27.53
					kW kg ⁻¹)	kW kg ⁻¹)
6	NiCo(OH) ₂ /graphene/carbon	2360	2030	~ 81%		
	nanotube	(0.5 A g^{-1})	(20 A g^{-1})			
7	NiCo ₂ O ₄ nanowire/Ni-Co			$\sim 69\%$	~ 96	58.4
	DHs				(~ 1	(41.3
					kW kg ⁻¹)	kW kg ⁻¹)
8	Ni-Co LDHs	2682	1706		77.3	~ 40
		(3 A g^{-1})	(20 A g^{-1})		(0.623	(~ 1.3
					kW kg ⁻¹)	kW kg ⁻¹)
9	Ni-Mn LDHs	881	403	88%		
		(1 A g^{-1})	(10 A g^{-1})	(after 500		
				cycles)		

10	Ni-Al LDHs/graphene	1255.8	755.6	$\sim 79\%^{****}$		
		(1 A g^{-1})	(6 A g^{-1})			
11	Ni-Al LDHs/graphene	1329	851	91%		
		(3.6 A g^{-1})	(18 A g^{-1})	(after 500		
				cycles)		
12	Ni-Al LDH/carbon nanotube	1500	1054	50%		
		(1 A g^{-1})	(10 A g^{-1})			
This	Ni-Co DHs	3028	2225	94%	127.22	93.48
wor	(electrodeposition)	(2 A g^{-1})	(50 A g^{-1})		(0.605	(15.125
-k					kW kg ⁻¹)	kW kg ⁻¹)

* C_s retention ratios after 2000 cycles galvanostatic charge-discharge tests

** based on the maximum $C_{\rm s}$

*** LDHs (layered double hydroxides)

**** after 1500 cycles, based on the maximum $C_{\rm s}$

References

- 1. G. Yang, C. Xu and H. Li, *Chem. Commun.*, 2008, **0**, 6537-6539.
- 2. X. Xia, J.. Tu, X. Wang, C. Gu and X. Zhao, J. Mater. Chem., 2011, 21, 671-679.
- 3. X. Zheng, Z. Gu, Q. Hu, B. Geng and X. Zhang, *RSC Adv.*, 2015, **5**, 17007-17013.
- 4. T. Yan, Z. Li, R. Li, Q. Ning, H. Kong, Y. Niu and J. Liu, J. Mater. Chem., 2012, 22, 23587-23592.
- 5. N. T. H. Trang, H. Van Ngoc, N. Lingappan and D. J. Kang, *Nanoscale*, 2014, **6**, 2434-2439.
- 6. Y. Cheng, H. Zhang, C. V. Varanasi and J. Liu, *Energy Environ. Sci.*, 2013, **6**, 3314-3321.
- 7. L. Huang, D. Chen, Y. Ding, S. Feng, Z. L. Wang and M. Liu, *Nano Lett.*, 2013, **13**, 3135-3139.
- 8. H. Chen, L. Hu, M. Chen, Y. Yan and L. Wu, *Adv. Funct. Mater.*, 2014, **24**, 934-942.
- 9. H. Sim, C. Jo, T. Yu, E. Lim, S. Yoon, J. H. Lee, J. Yoo, J. Lee and B. Lim, *Chem. Eur. J.*, 2014, **20**, 14880-14884.
- 10. L. Zhang, J. Wang, J. Zhu, X. Zhang, K. San Hui and K. N. Hui, *J. Mater. Chem. A*, 2013, **1**, 9046-9053.
- 11. J. Xu, S. Gai, F. He, N. Niu, P. Gao, Y. Chen and P. Yang, J. Mater. Chem. A, 2014, 2, 1022-1031.
- 12. M. Li, F. Liu, J. Cheng, J. Ying and X. Zhang, J. Alloys Compd., 2015, 635, 225-232.