Supplementary Data

NMR fingerprints, an integrated approach to uncover the unique components of the drug-like natural product metabolome of termite gut-associated *Streptomyces* species.

C. A. Romero,^a T. Grkovic,^a J. Han,^b L. Zhang,^b J. R . J. French,^c D. İ. Kurtböke^c and R. J. Quinn^{*a}

^a Eskitis Institute for Drug Discovery, Griffith University, QLD 4111, Australia.

^b Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China ^b Genecology Research Centre, Faculty of Science, Health, Education, and Engineering, University of the Sunshine Coast, Maroochydore DC, Qld 4558, Australia.

* Corresponding author: Ronald J. Quinn

Tel.: +61-7-3735-6000; fax: +61-7-3735-6001

E-mail: rquinn@griffith.edu.au

Experimental Methods

General Experimental Procedures

The UV spectra were recorded on a JASCO Varian-650 UV/Vis spectrophotometer. NMR spectra were recorded at 30°C on either a Varian 500 or 600 MHz Unity INOVA spectrometer. The latter spectrometer was equipped with a triple resonance cold probe. The ¹H and ¹³C NMR chemical shifts were referenced to the solvent peak at δ_{H} 2.50 and δ_{C} 39.52 for DMSO- d_{6} . LR-ESIMS were recorded on a Waters Alliance 2790 HPLC system equipped with a 996 PDA detector, and an Alltech ELSD that was attached to a Water ZQ ESI mass spectrometer. All HR-ESIMS were recorded on an Agilent Q-TOF 6520 mass spectrometer. A Waters 600 pump equipped with Waters 996 PDA detector and Gilson 715 liquid handler were used for all HPLC work. Semipreparative HPLC separations were carried out either with a Phenomenex Onyx Monolitic (100 x 10 mm) C₁₈ column or a Thermo Scientific BDS Hypersil C₈ column (250 X 10 mm). All solvents used for chromatography, UV, and MS were Lab-Scan HPLC grade (RCI Lab-Scan, Bangkok, Thailand), and the H₂O was Millipore Milli-Q PF filtered.

S1: ¹H NMR fingerprint spectrum of *Streptomyces* sp. USC 592, LLE fraction 1 at 600 MHz in MeOD- d_4

S2: ¹H NMR fingerprint spectrum of *Streptomyces* sp. USC 592, LLE fraction 2 at 600 MHz in MeOD- d_4

S3: ¹H NMR fingerprint spectrum of *Streptomyces* sp. USC 592, LLE fraction 4 at 600 MHz in DMSO-*d*₆

S4: ¹H NMR fingerprint spectrum of *Streptomyces* sp. USC 592, LLE fraction 5 at 600 MHz in DMSO-*d*₆

S5: ¹H NMR fingerprint of LLE fraction 5 indicating the presence of two components, large-scale NMR guided isolation yield two pure compounds, BE-54017 (middle spectrum) and actinopolymorphol D (spectrum at the bottom).

S6: ¹H NMR spectrum of actinoglycosidine A at 600 MHz in MeOD- d_4

S7: gCOSY spectrum of actinoglycosidine A at 600 MHz in MeOD- d_4

S8: gHSQC spectrum of actinoglycosidine A at 600 MHz in MeOD- d_4

S9: gHMBC spectrum of actinoglycosidine A at 600 MHz in MeOD- d_4

S10: ¹³C NMR spectrum of actinoglycosidine A at 150 MHz in MeOD- d_4

S11: NOESY spectrum of actinoglycosidine A at 600 MHz in MeOD- d_4

S12: ¹H NMR spectrum of actinoglycosidine B at 600 MHz in MeOD- d_4

S14: gHSQC spectrum of actinoglycosidine B at 600 MHz in MeOD- d_4

S15: gHMBC spectrum of actinoglycosidine B at 600 MHz in MeOD- d_4

S16: ¹³C NMR spectrum of actinoglycosidine B at 150 MHz in MeOD- d_4

S18: Acid Hydrolysis of actinoglycosidine A

S19: ¹H NMR spectrum of actinopolymorphol D at 600 MHz in Acetone- d_6

S20: gCOSY spectrum of actinopolymorphol D at 600 MHz in Acetone- d_6

S21: gHSQC spectrum of actinopolymorphol D at 600 MHz in Acetone- d_6

S22: gHMBC spectrum of actinopolymorphol D at 600 MHz in Acetone- d_6

S23: ¹³C NMR spectrum of actinopolymorphol D at 150 MHz in Acetone- d_6

S24: ¹H NMR spectrum of fractions 17, 18 and 21 containing the known natural product 2-amino-6-methoxy-9H-pyrrolo[2,3-d]pyrimidine-7-carbonitrile at 600 MHz in DMSO- d_6

S25: ¹H NMR metabolic fingerprints of *Streptomyces* sp. USC 593 in MeOD- d_4

S28: gHSQC NMR spectrum of niveamycin A at 600 MHz in MeOD- d_4

S30: ¹³C NMR spectrum of niveamycin A at 150 MHz in MeOD- d_4

S31: ROSY NMR spectrum of niveamycin A at 600 MHz in MeOD- d_4

S33: gCOSY NMR spectrum of niveamycin B at 600 MHz in MeOD- d_4

S34: gHSQC NMR spectrum of niveamycin B at 600 MHz in MeOD- d_4

S35: gHMBC NMR spectrum of niveamycin B at 600 MHz in MeOD- d_4

S36: ¹³C NMR spectrum of niveamycin B at 150 MHz in MeOD- d_4

S38: gCOSY NMR spectrum of niveamycin C at 600 MHz in MeOD- d_4

S39: gHSQC NMR spectrum of niveamycin C at 600 MHz in MeOD- d_4

S40: gHMBC NMR spectrum of niveamycin C at 600 MHz in MeOD- d_4

S41: Cartesian coordinates of the most stable conformers for niveamycin B (**8**) at the B3LYP/6-311 + G(d,p)//B3LYP/6-311 + G(2d,p) level of theory in MeOD- d_4

Atom -		Angstroms	
	x	У	z
C1	-2.840950	-1.105356	-1.605486
C2	-1.745022	-0.276028	-1.263514
C3	-1.509610	0.030069	0.097543
C4	-2.337181	-0.479783	1.091897
C5	-3.414523	-1.309217	0.738514

C6	-3.668754	-1.620449	-0.590030
C7	-0.867870	0.259793	-2.302116
C8	0.305457	1.093208	-1.927448
C9	0.559056	1.368440	-0.622756
C10	-0.372902	0.918847	0.461069
011	-3.127970	-1.426639	-2.879431
012	-0.203830	1.300360	1.618084
013	-1.081518	0.017930	-3.510020
C14	1.717813	2.198437	-0.173079
C15	1.144127	1.614004	-3.080674
C16	1.677506	0.459488	-3.948784
017	1.975254	-0.609083	-3.431134
C18	1.912942	0.707297	-5.419914
C19	2.935391	1.647328	0.267155
C20	3.997816	2.478116	0.662305
C21	3.863139	3.866053	0.654532
C22	2.643560	4.421689	0.240286
C23	1.585467	3.604072	-0.166817
C24	4.997559	4.765665	1.085659
025	0.373062	4.081606	-0.573421
C26	0.142048	5.492753	-0.553692
C27	3.090878	0.166556	0.359399
028	2.168851	-0.635066	0.332489
029	4.373069	-0.224400	0.499037
C30	0.418027	2.740476	-3.850026

H31	-2.140314	-0.233290	2.129814
H32	-4.059676	-1.712626	1.514691
H33	-4.501640	-2.258210	-0.872506
H34	-2.451910	-0.981343	-3.453293
H35	2.058980	2.048531	-2.652634
H36	2.364592	-0.177698	-5.870584
H37	0.967980	0.937650	-5.923173
H38	2.572382	1.571114	-5.564775
H39	4.927214	2.026619	0.990737
H40	2.532028	5.500924	0.241779
H41	5.312387	5.422364	0.266547
H42	4.695209	5.409790	1.919037
H43	5.865499	4.183065	1.404712
H44	0.825550	6.015850	-1.232174
H45	-0.884477	5.625405	-0.896013
H46	0.245339	5.895091	0.460301
H47	4.386607	-1.202521	0.585719
H48	-0.465420	2.364064	-4.370428
H49	0.103208	3.515517	-3.147534
H50	1.085016	3.204327	-4.581838

At a ma	Angstroms		
Atom -	x	Y	Z
C1	-2.906297	-1.130477	-1.497726
C2	-1.802353	-0.298625	-1.189329
C3	-1.543037	0.031128	0.161822
C4	-2.355074	-0.458168	1.179042
C5	-3.440599	-1.290432	0.858919
C6	-3.718217	-1.624657	-0.459315
C7	-0.941346	0.215612	-2.252088
C8	0.240658	1.051738	-1.912342
C9	0.517008	1.349676	-0.617291
C10	-0.397845	0.922764	0.489999
011	-3.215846	-1.473662	-2.760642
012	-0.208236	1.324650	1.636893
013	-1.176135	-0.047196	-3.451653
C14	1.685574	2.184000	-0.202261
C15	1.061300	1.548912	-3.088770
C16	1.576319	0.377238	-3.944858
017	1.879878	-0.682749	-3.413102
C18	1.787043	0.597605	-5.424071
C19	2.908883	1.637119	0.227159
C20	3.980225	2.471601	0.589154

C21	3.849305	3.859557	0.558652
C22	2.624370	4.411448	0.155274
C23	1.557248	3.589941	-0.219044
C24	4.993384	4.763316	0.954116
025	0.339385	4.063800	-0.613443
C26	0.112613	5.475789	-0.615094
C27	3.061803	0.157789	0.343577
028	2.137198	-0.641324	0.346974
029	4.345069	-0.234538	0.468422
C30	0.325789	2.663922	-3.865834
H31	-2.139961	-0.193677	2.208876
H32	-4.073617	-1.677821	1.653044
H33	-4.557583	-2.264760	-0.716149
H34	-2.548313	-1.040938	-3.353776
H35	1.984611	1.987901	-2.684074
H36	2.228256	-0.296860	-5.866304
H37	0.834185	0.821842	-5.915063
H38	2.446379	1.456530	-5.595957
H39	4.913797	2.023178	0.909876
H40	0.909876	5.490878	0.139351
H41	5.296083	5.404044	0.117958
H42	4.707043	5.423395	1.780634
H43	5.864998	4.183914	1.268960
H44	0.234299	5.895871	0.389619
H45	0.785882	5.984563	-1.314380

H46	-0.919234	5.605417	-0.942234
H47	4.357388	-1.210975	0.572561
H48	-0.567563	2.281303	-4.364345
H49	0.025386	3.452507	-3.172164
H50	0.981687	3.112270	-4.617079

Atom		Angstroms		
Atom	х	Y	Z	
C1	-2.906297	-1.130477	-1.497726	
C2	-1.802353	-0.298625	-1.189329	
C3	-1.543037	0.031128	0.161822	
C4	-2.355074	-0.458168	1.179042	
C5	-3.440599	-1.290432	0.858919	
C6	-3.718217	-1.624657	-0.459315	
C7	-0.941346	0.215612	-2.252088	
C8	0.240658	1.051738	-1.912342	
C9	0.517008	1.349676	-0.617291	
C10	-0.397845	0.922764	0.489999	
011	-3.215846	-1.473662	-2.760642	
012	-0.208236	1.324650	1.636893	
013	-1.176135	-0.047196	-3.451653	

C14	1.685574	2.184000	-0.202261
C15	2.072935	-0.662519	-1.270182
C16	2.123783	-1.955356	-0.436431
017	1.447453	-2.069273	0.576635
C18	3.096212	-3.035280	-0.850952
C19	2.453117	3.020225	-1.318000
C20	3.549824	3.804690	-0.919812
C21	3.975737	3.819992	0.407582
C22	3.284032	3.038933	1.345111
C23	2.197520	2.248571	0.958288
C24	5.152188	4.661662	0.843191
025	1.476580	1.479293	1.821945
C26	1.810434	1.499656	3.212340
C27	1.979421	3.092696	-2.730347
028	0.908445	2.660936	-3.132241
029	2.853219	3.706628	-3.552598
C30	2.478010	-0.828379	-2.753532
H31	-3.297685	2.796013	-0.537550
H32	-5.326819	1.461715	-1.131577
H33	-5.092039	-0.893837	-1.898919
H34	-1.917511	-2.420068	-2.182764
H35	2.835660	-0.027486	-0.795744
H36	2.800192	-3.460529	-1.816341
H37	4.104624	-2.624708	-0.977411
H38	3.110432	-3.821758	-0.094933

H39	4.057058	4.416094	-1.657403
H40	3.603640	3.059136	2.381734
H41	4.866202	5.358023	1.639407
H42	5.960415	4.034343	1.236485
H43	5.552148	5.244540	0.009593
H44	1.093759	0.834300	3.693936
H45	2.826893	1.126290	3.380781
H46	1.711473	2.509234	3.627052
H47	2.455152	3.742440	-4.449628
H48	1.814046	-1.523581	-3.271810
H49	2.426284	0.136742	-3.263505
H50	3.505198	-1.192652	-2.838442

Atom	Angstroms		
Atom -	x	У	Z
C1	-2.807759	-1.041507	-1.658080
C2	-1.704543	-0.228399	-1.300536
C3	-1.553925	0.177259	0.046874
C4	-2.474114	-0.216784	1.011916
C5	-3.560950	-1.027322	0.643387
C6	-3.730920	-1.437232	-0.671526
C7	-0.735630	0.191917	-2.309162
C8	0.435583	1.022810	-1.914406
C9	0.606398	1.393386	-0.620790
C10	-0.400957	1.037168	0.429240
011	-3.014346	-1.457920	-2.919599
012	-0.270403	1.458603	1.577321
013	-0.868567	-0.138735	-3.506886
C14	1.755583	2.231938	-0.159957
C15	1.359045	1.444848	-3.042430
C16	1.919248	0.219798	-3.787248
017	2.167041	-0.807155	-3.168625
C18	2.242550	0.346993	-5.256527
C19	2.991411	1.711577	0.264351
C20	4.036675	2.570694	0.643789

C21	2 960019	2 05 4020	0 612722
021	5.609016	5.954050	0.042725
C22	2.633619	4.480614	0.235180
C23	1.594853	3.636188	-0.164276
C24	4.981849	4.879209	1.075784
025	0.375314	4.080861	-0.586833
C26	0.112597	5.486374	-0.589191
C27	3.289364	0.248216	0.347748
028	4.417289	-0.217209	0.282101
029	2.205041	-0.521900	0.543779
C30	0.710717	2.530323	-3.930685
H31	-2.341770	0.104605	2.039515
H32	-4.279813	-1.337955	1.397134
H33	-4.569283	-2.062349	-0.965804
H34	-2.281697	-1.087228	-3.475994
H35	2.253838	1.891725	-2.586376
H36	2.696447	-0.579369	-5.611635
H37	1.333589	0.557944	-5.829708
H38	2.931119	1.182899	-5.427801
H39	4.980190	2.133002	0.953522
H40	2.497332	5.557003	0.230995
H41	5.207664	5.617077	0.297961
H42	4.701746	5.435078	1.978150
H43	5.897124	4.322760	1.293121
H44	0.196417	5.905074	0.420029
H45	0.791705	6.014927	-1.267857

H46	-0.912841	5.591475	-0.944005
H47	2.491166	-1.461935	0.563177
H48	-0.151107	2.140391	-4.476770
H49	0.376775	3.361938	-3.305000
H50	1.432885	2.924851	-4.650641

Atomx	Angstroms	Angstroms	
	x	У	z
C1	-2.944922	-0.849216	-1.828464
C2	-1.800424	-0.105073	-1.450835
C3	-1.957298	1.237695	-1.033267
C4	-3.216366	1.826363	-0.997644
C5	-4.341365	1.079358	-1.385355
C6	-4.214031	-0.240482	-1.794998
C7	-0.474444	-0.716791	-1.480979
C8	0.725473	0.080904	-1.115287
C9	0.589644	1.380815	-0.743888
C10	-0.761373	2.017340	-0.616176
011	-2.870212	-2.132194	-2.223383
012	-0.865107	3.156179	-0.163154
013	-0.326083	-1.913195	-1.813839

C14	1.745559	2.255574	-0.378499
C15	2.071916	-0.604220	-1.279754
C16	2.191097	-1.952870	-0.545346
017	2.833638	-2.873278	-1.029717
C18	1.582482	-2.065142	0.836215
C19	2.364258	3.136598	-1.285709
C20	3.448220	3.935644	-0.883638
C21	3.922426	3.894081	0.426869
C22	3.293759	3.037679	1.342832
C23	2.221202	2.232163	0.950346
C24	5.085822	4.751304	0.866640
025	1.562886	1.384700	1.795008
C26	1.925652	1.367419	3.179058
C27	1.841476	3.255757	-2.677106
028	0.792408	2.767167	-3.072090
029	2.639858	3.978802	-3.486011
C30	2.489831	-0.711235	-2.758240
H31	-3.316238	2.856591	-0.672938
H32	-5.325891	1.539357	-1.362925
H33	-5.078898	-0.826586	-2.092848
H34	-1.915968	-2.399218	-2.177943
H35	2.810920	0.026948	-0.763951
H36	2.114000	-2.827953	1.408958
H37	1.595644	-1.107089	1.362189
H38	0.535945	-2.376266	0.739348

H39	3.909339	4.601212	-1.604454
H40	3.652455	3.010805	2.366415
H41	4.808497	5.388509	1.713775
H42	5.930391	4.131929	1.189938
H43	5.431299	5.396331	0.054804
H44	1.244790	0.658679	3.650965
H45	2.959146	1.028916	3.313988
H46	1.796247	2.356792	3.631541
H47	2.214157	4.031459	-4.369449
H48	1.799914	-1.350857	-3.313655
H49	2.501814	0.278228	-3.221989
H50	3.489210	-1.146100	-2.830626

Atom -	Angstroms		
Atom -	х	У	Z
C1	-2.908165	-1.034348	-1.489590
C2	-1.792069	-0.183761	-1.297740
C3	-1.836465	0.794381	-0.276621
C4	-2.962510	0.927531	0.528095
C5	-4.064311	0.080159	0.323233
C6	-4.043562	-0.889113	-0.669859
C7	-0.605182	-0.316794	-2.137944
C8	0.561676	0.581221	-1.933593
C9	0.547702	1.494919	-0.927911
C10	-0.664741	1.686787	-0.067752
011	-2.930030	-1.988716	-2.436327
012	-0.684398	2.580639	0.777135
013	-0.539404	-1.198124	-3.022599
C14	1.680351	2.430434	-0.650898
C15	1.715543	0.420084	-2.909468
C16	2.228196	-1.027149	-3.046657
017	2.547626	-1.478523	-4.136689
C18	2.476827	-1.815690	-1.777785
C19	2.679616	2.178093	0.307685
C20	3.721200	3.098460	0.516565

C21	3.777713	4.292471	-0.201303
C22	2.768734	4.563399	-1.137488
C23	1.733042	3.651126	-1.358330
C24	4.894831	5.285619	0.017090
025	0.713885	3.860871	-2.240954
C26	0.667201	5.092036	-2.966934
C27	2.614869	0.941333	1.138179
028	1.663605	0.173926	1.174834
029	3.721947	0.738705	1.879031
C30	1.396094	1.045556	-4.280449
H31	-2.977135	1.682603	1.306815
H32	-4.945285	0.182559	0.951557
H33	-4.890442	-1.549491	-0.833959
H34	-2.056334	-1.958498	-2.905125
H35	2.571516	0.960156	-2.478195
H36	2.524226	-2.881402	-2.009033
H37	3.449874	-1.507449	-1.372531
H38	1.732726	-1.624566	-1.001740
H39	4.481644	2.876355	1.256528
H40	2.801560	5.497724	-1.688086
H41	5.494004	5.409328	-0.892449
H42	4.499627	6.272790	0.281258
H43	5.562238	4.960607	0.819256
H44	1.545894	5.205090	-3.612086
H45	-0.231550	5.034744	-3.581272

H46	0.593031	5.948084	-2.286932
H47	3.587943	-0.074642	2.412805
H48	0.580408	0.509665	-4.771602
H49	1.110999	2.092280	-4.155494
H50	2.274166	0.990718	-4.928171